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Why This Talk?

Mathematics Awareness Month - April 2009 @ Mathematics Awareness Month
Mathematics and Climate

@ How long will the summer Arctic sea ice pack survive?
@ Are hurricanes and other severe weather events getting
stronger?

How much will sea level rise as ice sheets melt?

How do human activities affect climate change?

How is global climate monitored?

@ Discuss what | do.

@ Discuss what YOU have done.
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http://www.mathaware.org/index.html

© Rising CO, and its consequences
9 Modeling forest carbon uptake

© Recent results from the literature
@ High-latitude ecosystems
@ Changes in the annual temperature cycle
@ Sea-ice predictions
@ The evolution of climate models



CO,: a modern problem
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http://www.esrl.noaa.gov/gmd/ccgg/trends/index.html

CO,: a modern problem
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Changes in global temperature
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Changes in global temperature
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Changes in global temperature

Temperature change from 2000 (C)
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Changes in global temperature
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Modeling global temperature
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Yearly Sea Ice Extent

Arctic Sea Ice Ext
Sea Ice Minimum 2005 (Area of ocean with at least I e ice)

Extent (millions of square kilometers)

National Snow and lce Data Center, Boulder CO
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Yearly Sea Ice Extent

September sea-ice extent:
2.0
Arctic Sea Ice from NASA:

Extent (million sq km)
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http://nsidc.org/arcticseaicenews/



seaIceMovie.mpg
Media File (video/mpeg)

http://www.nasa.gov/centers/goddard/news/topstory/2005/arcticice_decline_prt.htm

9 Modeling forest carbon uptake



Modern CO, measurement record

Mean Carbon Dioxide
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Atmospheric carbon dioxide monthly mean mixing ratios. Data prior to May 1974 are from the Scripps Institution of Oceanography (SIO, blue), data since
May 1974 are from the National Oceanic and Atmospheric Administration (NOAA, red). A long-term trend curve is fitted to the monthly mean values. Contact:
Dr. Pieter Tans, NOAA ESRL Carbon Cycle, Boulder, Colorado, (303) 497-6678, pieter.tans@noaa.gov, and Dr. Ralph Keeling, SIO GRD, La Jolla, California,
(858) 534-7582, rkeeling@ucsd.edu.




Climate change and CO,

GLOBAL GROWTH RATE
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Forest carbon uptake

hotosynesis




Niwot Ridge, Colorado

@ Subalpine forest

e Subalpine fir (A. lasiocarpa)
o Engelmann spruce (P. engelmannii)
o Lodgepole pine (P. contorta)

@ 3050 m (10,000 ft) elevation
@ Mean annual precipitation: 800 mm

@ Mean annual temperature is 1.5 °C.
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NEE seasonal variability

January 2003 diurnal average May 2003 diurnal average
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Ecosystem model (structure)

Photosynthesis
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Zobitz et al. (2008), Ecosystems Litter/turnover



Fluxes (g C m 2 day™)

Results: Whole-ecosystem partitioning
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Zobitz et al. (2008) Ecosystems




Results: Whole-ecosystem partitioning

Fluxes (g C m — day'l)
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Zobitz et al. (2008) Ecosystems
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Global measurement network

NETWORK
AmeriFlux
AsiaFlux
CarboEurope 1P
ChinaFLUX
Fluxnet-Canada
Inactive
KoFlux
LBA
Other

OzFlux i
Unaffiliated

www.fluxnet.ornl.gov

As of January 2009: 500 sites = 2600 site years of data

Some sites provide 15 years of continuous data.

=~ 40 million half-hourly measurements of biosphere-atmosphere
carbon exchange

@ All data are FREE and publicly available.
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www.fluxnet.ornl.gov

Global NPP

Global NPP

SEP 1997


http://dge.stanford.edu/DGE/CIWDGE/research/models/animated_npp.html

© Recent results from the literature
@ High-latitude ecosystems
@ Changes in the annual temperature cycle
@ Sea-ice predictions
@ The evolution of climate models



High latitude ecosystems




High latitude ecosystems




High latitude greening

Persistence of Greening
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Courtesy of Liming Zhou WWW.nasa.gov

C02 is life


www.nasa.gov
http://tinyurl.com/pkzoe 

Carbon uptake in high latitude ecosystems

CUP = Carbon Uptake Period = summer length

Anomaly of autumn temperature (°C)

-6 -4 2 0 2 4
. . ' ; 50
R s
2
05 3
29
o °©
0 sg
o)
>0
05 &
e o o
c
<
-50

Cooler autumn = carbon uptake period increases
Piao et al. (2008), Nature



Changes in surface temperature
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Changes in surface temperature
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Changes in surface temperature
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Stine et al. (2009)



Changes in surface temperature
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Stine et al. (2009)



Temperature range is damped

temperature

Mface energy
|
I .
time
|

I
D —— Gain = Amplitude ratio

Solar energy

time

1year

Stine et al. (2009)



Seasons are happening earlier
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Sea ice decline: faster than modeled
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September Sea Ice Extent: Observations and Model Runs
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Future climate changes
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Climate models are becoming more realistic

The World in Global Climate Models

Mid-1980s

ivers Overturning
Rivers CheTtiming Interactive Vegetation

IPCC 4th Assessment Report (2007)



Climate models are becoming more realistic

IPCC 4th Assessment Report (2007)






Summary




Summary

@ Math is an essential partner in understanding climate.

@ Quantitative literacy is important to interpret climate

results.
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