Physics 486                  Quantum Mechanics                  Spring Semester

 

Class Hours:     MWF 12:10-1:10 pm

Classroom:        Science 21

Instructor:          Jeff E. Johnson

Office:               17A Science Hall

Office Hours:     As posted

Phone:              330-1070 (Augsburg), 651-482-8341 (Home)

Text:                 Quantum Mechanics (second edition) Goswami

Prerequisites:    Modern Physics, Mechanics I, Concurrent registration in E&M I and II is strongly recommended.

 

Summary of the Course: The purpose of this course is to familiarize the student with the foundations of Quantum Mechanics.  We will also discuss the philosophical implications of this rather non-intuitive subject.  Although Quantum Mechanics when combined with relativity and electricity and magnetism (QED, Quantum Electrodynamics) is the most accurate theory yet devised by humankind, we still understand very little of what it really means.  There is said to be three stages a student goes through when attempting to learn Quantum Mechanics: (1) I do not understand Quantum Mechanics, (2) I can do Quantum Mechanics, (3) I do not understand Quantum Mechanics.  This difficulty in understanding Quantum Mechanics is perhaps not too surprising since unlike Newton’s Laws, Quantum Mechanics applies to the subatomic realm where we have little experience in our everyday lives.

 

Tentative Schedule:

 

                        Note:  Normally, this would be a yearlong course.  Because we only have one semester, I will only cover the main ideas of Quantum Mechanics.  Therefore, some chapters may be lightly touched on or omitted.  Also, note

                        that we may use some chapters in Gasiorowicz (see below)  instead of Goswami if the former gives a better presentation.  Goswami’s and Gasiorwicz’s texts are very similar. 

 

 

 

Topic                                                                                       Text

1. Motivation for QM, Bohr Atom,

Uncertainty Principle                                                               Chapters 1,2, Lecture notes

2. Schrodinger Equation, Postulates of QM                             Chapter 3

3. One Dimensional Solutions                                                 Chapter 4

4. Heisenberg-Bohr Microscope                                               Chapter 5 (Bits of this will be                                       presented throughout the                                            course)                        

5. Dirac Description                                                                 Chapter 6

6. Harmonic Oscillator                                                             Chapter 7(will not do matrix                                                                                                    method)

7. Equations of Motion                                                             Chapter 8 (might be done at                                                                                                    end)

8. Two Particle Systems                                                          Chapter 9

9. Copenhagen Interpretation                                                  Chapter 10 (will discuss at                                                                                                       end)

10. Angular Momentum                                                           Chapter 11 (probably will use                                                                                                  Gasiorowicz)

11. Motion in a Central Potential                                             Chapter 12 (probably will use                                                                                                  Gasiorowicz)

12. Hydrogen Atom                                                                  Chapter 13 (probably will use                                                                                                  Gasiorowicz)

13.  Time Independent Perturbation Theory                            Chapter 18 (probably will use

                                                                                                Gasiorowicz)

                                                                                                           

14. Electrons in EM Field                                                         Chapter 14 (probably will use                                                                                                  Gasiorowicz)

15.  Basic Idea of Spin                                                             Mainly lecture notes.                                                                                                               Optional class if you really                                                                                                      want to know!

16.  Helium Atom ,Ritz Variational method                              Chapter 19

17.  Structure of Atoms (periodic table)                                   Chapter 20 (probably will use                                                                                                  Gasirowicz)

18. Numerical Solution to Schrodinger’s Equation                  Lecture notes, optional extra                                                                                                  class if there is interest.                                                          

           

19.  The Meaning of Quantum Mechanics?                              Lecture notes and handouts.

Grading: 

 

There will be three semester exams and one comprehensive final exam.  The semester exams

will be held during the fourth, eighth, and twelfth weeks of the semester.  Assigned homework

problems will also count towards your final grade. The weighting of the above components is as

follows:

 

Component:                                           Percent of Grade:

 

Homework                                             20%

3 exams                                                45%

Final (Comprehensive)                            35%

 

Recommended Reserve books:              

 

Quantum Physics, R. Eisberg and Resnick

Quantum Physics by Stephen Gasiorowicz, second edition