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a membrane energy or a bending energy are obtained by Γ -convergence techniques.
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the films.

Keywords Thin film · Heat shrinking · Membrane energy · Bending energy ·
Melinex · Compatibility conditions

Mathematics Subject Classification (2000) 74B15 · 74B20 · 74F05 · 74G65 ·
74K35 · 74S05 · 93B40



Noname manuscript No.
(will be inserted by the editor)

Modeling the behavior of heat-shrinkable thin films
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1 Introduction

In this paper we attempt to analyze the behavior of heat-shrinkable thin films. The

material of the film could be of general nature; however, the industrial motivation for

this work comes from heat-shrinking polymeric thin films onto car windshields. These

films are well represented by materials such as PET. Constitutive description of poly-

mers invokes numerous mathematical and modeling challenges due to the complicated

configuration of polymer molecules. The main feature we are interested in here is the

ability of polymers to shrink at high temperatures. A rough explanation for this effect

is that heating increases the ability of molecules to rearrange atoms comprising the

molecules in such a way that the total internal energy is minimized. Our goal is to

define a simple, yet descriptive enough energy to be minimized to capture the resulting

deformation of the film. One might hope that a modeling approach based on minimiza-

tion of energy allows one not only to find a state with (locally) minimal energy, but

also (assuming the molecule rearrangement happens on a much shorter time scale than

other effects of interest in this paper) possibly trace the dynamics of evolution through

the energy-minimizing sequences of configurations of the thin film.
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For materials with memory, the general constitutive equation for stress at time t

should respect the history of the strain evolution and the temperature evolution up to

time t and hence one might write (see,e.g., [2, 27])

σ(x, t) = σ̂ (E(x, ·), θ(x, ·)) ,

where σ(x, t) is the stress at time t at the point x in the reference configuration, E(x, ·)
denotes the strain at the point x with its history up to time t, and θ(x, ·) denotes

the temperature at the point x with its history up to time t. An example of such a

relationship without the dependence on temperature history is given by a single integral

of the form

σ(x, t) =

Z t

0
m(x, t− τ)

∂E

∂τ
(x, τ) dτ,

where m(x, t − τ) represents a relaxation modulus. Relationships like the one above

have been used in literature (see, e.g., [18,26,28,37,38,40,45]), but they are in general

quite complicated and are often replaced by viscoelastic and/or thermo-viscoelastic

approximations that depend on the values of the strain and the temperature as well as

their time derivatives at time t (see, e.g., [2, 27])

σ(x, t) = σ̂

„
E(x, t),

∂E

∂t
(x, t), θ(x, t),

∂θ

∂t
(x, t)

«
that allow one to avoid complicated integro–differential equations in the formulation

of a boundary-value problem or a corresponding minimization problem.

The materials modeled in our paper are represented by a DuPont’s Melinex

polyester film. Polyester is an example of a material, for which it is reasonable to

(locally) decouple time and strain [39] due to the special dynamics of hysteresis in

the evolution of strain. The experiments presented in Section 2 demonstrate that the

reversible part of strain can be separated from the plasticity effects for the particular

temperature distribution across the film that leads to the behavior shown in Figures 1

and 2. That is, one can assume that the relaxation effects are taking place only at

high temperatures, and so all the relaxation and hysteretic effects are avoided at low

temperatures.

Based on the results of the experiments described in Section 2, the class of materi-

als represented by Melinex exhibit an isotropic strain–temperature relationship when

the material is uniformly heated above a certain critical temperature and then cooled

down to the room temperature. The film’s response seems affected only by the highest

temperature the film has experienced. This leads us to introduce in Section 3 in equa-

tion (1) the concept of a locally “preferred” Cauchy–Green strain for a given attained

maximum temperature, and in (3) an energy density as a function of the difference

between the actual Cauchy–Green strain and the “preferred” Cauchy–Green strain de-

noted by 2E, i.e., E represents one-half of the deviation of the actual Cauchy–Green

strain from the preferred strain. This conveniently bypasses having to deal directly

with stress, yet the stress can still be computed, if needed, from the energy density.

Our goal is to study the behavior of thin films of these materials. There is a vast

amount of literature on the subject of thin films, and one of the recent popular tech-

niques of 3D to 2D reduction is that of Γ -convergence, whereby a limit of a general

three-dimensional energy functional and its minimizers are studied as the thickness of

the film tends to zero (see, e.g., [1, 3–5, 14, 19, 22, 23, 31, 34, 36, 44]). Since the Γ -limit
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of the energy of an asymptotically thin film is a two-dimensional energy, it can pro-

vide a more tractable and efficiently computed model. However, the films of interest

in the industry have finite, nonnegligible thickness on the order of 10 µm–500 µm, and

therefore a competition between a membrane energy and a bending energy will take

place. Since these two energies are of different orders of magnitude in the thickness of

the film, Γ -convergence techniques cannot recover both of them simultaneously.

Other models, mostly based on asymptotic expansions, have been proposed and

studied in the literature (see, e.g., [29,30,33,46,47]) that combine both the membrane

and bending energies. Our approach in Section 3 is based on the asymptotic expansion

of the deformation of the film with as few assumptions as possible. We introduce an

energy model (see (12) and (13)) that has as its first two lowest-order terms a “mem-

brane” energy of order h (where h is the thickness of the film) and a “bending” energy

of order h3. In Sections 4 and 5 we compare the membrane and bending energies from

our model to those obtained by Γ -convergence techniques and those in the popular

Koiter’s shell model, respectively. In order to make these comparisons, we assume that

no temperature-induced shrinkage takes place, and show that in both cases the bending

energies agree, while there is are slight disagreements in the membrane energy expres-

sions. Finally, in Section 6, we use a simplified version of our model and present some

results of computer simulations for free-standing films subjected to various temperature

distributions.

Our approach in this paper is similar in effect to that in [46] and [47]. We start

assuming that the deformation of the film can be asymptotically expanded in the out-

of-plane variable and arrive at an expansion of the relevant energy in the thickness

of the film. In [46], the starting point is an asymptotic expansion of the deformation

in the thickness of the film, and the outcome is an expansion of energy. In [47], the

starting point is an asymptotic expansion of the energy in the thickness of the film and

the results can be interpreted in terms of the expansion of the deformation. We also

note that unlike in [29, 30], our model depends only on the strain associated with the

deformation, not the gradient of the strain.

2 Description of experimental data

Experiments have been performed in 3M laboratories to measure the non-reversible

shrinkage behavior of DuPont’s Melinex polyester films. As most films of this type,

they exhibit a reversible thermal expansion behavior with a non-reversible dimensional

instability superimposed as a result condition in the film processing. For many films,

such as these, the dimensional instability is often intentionally tuned into the film to

enhance its performance in the particular application it is intended for. The sources

of the shrinkage are often viscoelastic in nature and in the case of semi-crystalline

polymers are often tied to the melting of crystalline physical crosslinks as well. Overall

the behavior is tied to a combination of the material properties and particular stress

history of the film.

Whichever the case, the shrinkage behavior can be observed and measured by

heating strips of the film through various heating cycles while measuring the film length.

Generally, on the first heat the film displays shrinkage behavior superimposed on the

thermal expansion behavior. During cooldown the film usually displays only reversible

thermal expansion. On subsequent heats, the film displays only the reversible thermal

expansion behavior up until the highest temperature of the previous heating cycle, then
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Fig. 1 Results of the heating and cooling of the Melinex film. The plots show strain (relative
elongation) in the particular direction as a function of temperature. The black curves corre-
spond to heating the film up to 150◦C and cooling it down to 30◦C with a 10-minute dwell
at 150◦C. The red curves correspond to heating/cooling cycles from 30◦C to 50◦C to 30◦C,
from 30◦C to 100◦C to 30◦C, and from 30◦C to 150◦C to 30◦C with no dwell at the highest
temperatures. Note the purely elastic response in the 30–50–30 cycle.

it goes on to display a combination of thermal expansion and non-reversible shrinkage

at higher temperatures as chain movements associated with longer relaxation times

kick in.

For this particular study, strips of Melinex polyester film of thickness 50.8 µm

(2 mil) of approximate sizes 2.5 cm by 0.3 cm were cut from a master roll in both

the machine and transverse directions of the film. Each strip was placed in a TA

Instruments 2940 Thermal Mechanical Analyzer (TMA) fitted with a Film and Fiber

Probe. A small load of approximately 0.005 kg was imposed on the strip to keep it

straight and the specimen was also subjected to a heating regimen consisting of (1)

heating at a rate of 5◦C/min to 150◦C, (2) holding at 150◦C for 10 minutes, and

(3) cooling back to 30◦C at a nominal rate of −5◦C/min. The 5◦C/min cooling rate

could be maintained for temperatures above 100◦C, but it generally slowed down

at the lower temperatures due to the room-temperature air used to cool the chamber.

Although techniques exist to speed up the process on this machine using liquid nitrogen,

we have generally found that the mechanical noise and vibrations often create excessive

noise in the shrinkage data, while the slower cooling rates at the lower temperatures

generally do not affect the measurement results. Plots of percent strain (referenced

to the initial sample length at 30◦C) versus temperature for specimens cut in the

machine and transverse directions are shown as black curves in Fig. 1. Both plots show

a gradual length increase of the specimens with temperature up to about 80◦C followed

by a gradual shrinkage from 80◦C to 150◦C. The specimens continue to shrink slightly

during the isotherm at 150◦C, then shrink again as they are cooled back to 30◦C.

To demonstrate the behavior of the non-reversible shrinkage discussed above, a

second set of specimens were placed in the TMA and subjected to a slightly differ-

ent heating regime consisting of three heating cycles running to progressively higher

temperatures of 50◦C, 100◦C, and 150◦C at 5◦C/min but with no isothermal stages.

During the first cycle to 50◦C, the heating and cooling curves superimposed on one

another indicated only reversible thermal expansion behavior exhibited by the mate-

rial up to that temperature. In the next cycle to 100◦C, the specimens showed nearly

identical behavior to the original cycle to 150◦C and showed the reversible thermal
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contraction upon cooling from 100◦C. During the last cycle to 150◦C, the length of the

specimen tracked exactly with the cooling curve from the previous cycle, then displayed

non-reversible shrinkage again at temperatures above 100◦C, the highest temperature

of the previous cycle. For the remainder of the final cycle the strain-versus-temperature

behavior tracked with that displayed by specimens in the single cycle heat to 150◦C.

These results are displayed as red curves in Fig. 1.

A notable exception to the tracking behavior between the single- and multiple-

cycle routines is seen in the specimens cut in the transverse direction. There we can

see the impact of the 10-minute dwell at 150◦C on the total shrinkage. Ironically, it is

this sample that is displaying the expected behavior, while the specimens cut in the

machine direction more closely tracking at the higher temperatures and final cooldown

are displaying the slightly anomalous behavior. We have no explanation of this other

than probable differences in specimen handling or loading in the TMA. Since we are

largely concerned with specimen behavior up to about 100◦C and not higher, we were

not too concerned about the differences displayed under the more unstable conditions

at the higher temperatures.

For this study we are primarily interested in quantifying the non-reversible shrink-

age behavior of the film for use in the shaping model. In other words, we want to know

how much the film will shrink in a given direction after being exposed to some elevated

temperature and then cooled down to the room temperature. To isolate this behavior,

we simply identify the cooling behavior during the final cooldown of our specimens

from 150◦C as reversible thermal expansion. We then subtract this curve (offset to

zero at 30◦C) from the previous heating curves to produce the plots shown in Fig. 2.

In this treatment we essentially ignore all time-dependent effects. This treatment is

reasonably valid as long as we qualify all predictions as occurring on a similar time

scale as our measurements, and as long as we do not go to too high temperatures (say

above 100◦C or so in this case.) The plots in Fig. 2 show the expected non-reversible

shrinkage of the film as a function of temperature. That is, specimens heated up to

about 70◦C (and not held at that temperature for an excessive period of time) are not

expected to display any shrinkage after cooling. However, specimens heated to about

100◦C are expected to shrink approximately 2% in the machine direction and approx-

imately 3% in the transverse direction. The multiple-cycle plot reveals the error in the

machine direction data. In that case, the single-cycle curve appears to predict slightly

less shrinkage than measured by the multiple-cycle plot. Judging from comparisons of

the multiple-cycle plots in both the machine and transverse directions, it appears that

the shrinkage behavior in the film is roughly the same in both directions and predicted

more precisely by the curve produced in the transverse direction.

3 Description of the model

We shall assume that the reference configuration of the undistorted film with thickness

h > 0 is Ωh = Ω ×
“
−h

2 , h
2

”
, where Ω ⊂ R2 is a domain with a Lipschitz continuous

boundary, ∂Ω. The film will be assumed to undergo a (non-self-intersecting) deforma-

tion u : Ωh → R3 with the deformation gradient F = ∇u : Ωh → R3×3 (such that

det F > 0) and the right Cauchy–Green strain C = FT F = (∇u)T∇u : Ωh → R3×3.

Based on the experimental results in the previous section, we shall make the as-

sumption that the local response of the film is a function of the highest temperature

the material point in question has experienced so far. One of our working assumptions
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Fig. 2 Results of the heating and cooling of the Melinex film. The plots show the actual
percentual shrinkage of the film at the end of the heating/cooling cycle as a function of the
highest temperature the film is exposed to. The black curves correspond to heating the film
up to 150◦C and cooling it down to 30◦C with a 10-minute dwell at 150◦C. The red curves
correspond to heating/cooling cycles from 30◦C to 50◦C to 30◦C, from 30◦C to 100◦C to
30◦C, and from 30◦C to 150◦C to 30◦C with no dwell at the highest temperatures. Note the
purely elastic response in the 30–50–30 cycle.

will be that the film is thin enough so that heat diffusion within the film does not

play a significant role in heat transfer, and therefore, after heating (using, for example,

a heat gun as in the experiments described in Section 2), most of the heat escapes

quickly into the surrounding cooler air. Under this assumption, the only role of the

heat treatment is to “prescribe” or “imprint” a certain non-uniformity into the mate-

rial in order to control its shrinkage. In addition, we remark that the experimentally

observed and visually significant deformation that took place after the film was heated

up was almost instantaneous, indicating that the time scale for the deformation would

be much shorter than a relevant time scale for heat diffusion.

With this understanding, we shall now assume that the material can be modeled by

a stored energy functional. To construct an energy model that accommodates large ro-

tations, we shall utilize the geometrically nonlinear continuum theory. Thus, the stored

energy density per unit volume will be a frame-indifferent function of the deformation

gradient, F ; using the polar decomposition theorem [2], frame indifference implies that

the energy density is a function of the Cauchy–Green strain, C. Based on the discus-

sion in the previous section, we shall assume that a uniformly heated (and then cooled

down to room temperature) material would undergo a uniform deformation with the

right Cauchy–Green strain I(θ) ∈ R3×3, where θ ∈ R denotes the maximum applied

temperature. For low maximum temperatures, we have I(θ) = I (the 3 × 3 identity

matrix) as there is no shrinkage. For high temperatures and isotropic materials,

I(θ) = (1− f(θ))I (1)

for a suitable function 0 ≤ f(θ) < 1. We shall therefore assume that I(θ) represents

a zero-energy state, an energetically “preferred” Cauchy–Green strain. To capture the

dependence of the energy on the strain and the temperature, we shall assume that the

energy density is an integrable function W : R3×3 × R → R+, i.e., it is a nonnegative

function of two arguments, the right Cauchy–Green strain, C, and the temperature,

θ. Motivated by the definition of the Green–St. Venant strain (given by 1
2 (C − I)), we

define a corresponding quantity as one-half of the difference between the Cauchy–Green
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strain and the “preferred” Cauchy–Green strain,

E(θ) =
1

2
(C − I(θ)), (2)

and define the energy density to be a function of the form

W (C, θ) = W̃ (E)
˛̨
E= 1

2 (C−I(θ))
(3)

with W̃ being a nonnegative function defined on symmetric 3×3 matrices, and W̃ (E) =

0 if and only if E = 0.

To demonstrate simple concepts below and for computational purposes in Section 6,

we shall use a quadratic energy density of the form

W̃ (E) =
1

2
E · CE, (4)

where C is the symmetric, positive definite elasticity tensor. The matrix dot product

is defined in the usual way

A ·B = tr (AT B) for A, B ∈ R3×3.

The total stored energy, Eh, of the film of thickness h, as a function of the deformation

u and the temperature θ, is now given by1

Eh(u, θ) =

Z
Ωh

W (∇u(x)T∇u(x), θ(x)) dx.

Using the expressions (2)–(4), the energy of the film becomes

Eh(u, θ) =

Z
Ωh

W̃
`

1
2 (C(x)− I(θ(x))

´
dx

=

Z
Ωh

1

8
[C(x)− I(θ(x))] · C [C(x)− I(θ(x))] dx,

(5)

where C(x) = ∇u(x)T∇u(x). Since the elasticity tensor, C, is symmetric, positive

definite, it follows that the total stored energy is zero if and only if the deformation

is such that the material at almost every material point experiences the shrinkage it

would if the film was globally heated to the same temperature as the point experiences,

i.e., if C(x) = I(θ(x)) = (1− f(θ(x))) I. The question then arises whether there exists

a deformation that associates with such a Cauchy–Green strain field. The compatibility

conditions which allow this possibility put a severe restriction on the tensor I(θ(x)), and

hence on the temperature distribution, θ(x) [16]. Due to a famous theorem of Liouville

concerning conformal maps in Rn (restricted to n = 3), the assumption C(x) = I(θ(x))

implies that either I(θ(x)) is constant throughout the film’s reference configuration, or

I(θ(x)) = α2|x − x̃|−4I for a nonzero constant α and a point x̃ ∈ R3. The first case,

I(θ(x)) being constant, implies that either the temperature is constant throughout the

body, or it varies arbitrarily in the interval corresponding to no shrinkage. Neither

1 For simplicity of the treatment, we assume that the temperature field can be prescribed in
the reference configuration. When the resulting deformations are small, this approach should
introduce only small errors. Alternatively, one can think of a human operator following the
material point as the film deforms. This is a current practice in 3M when applying the films
onto car windshields.
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scenario is very interesting in applications as they represent uniform shrinkage, and no

shrinkage, respectively. It can be shown that in the second case a Cauchy–Green strain

of the form I(θ(x)) = α2|x− x̃|−4I corresponds to a deformation of the form

u(x) = α A
x− x̃

|x− x̃|2
+ x̂,

where x̂ ∈ R3 and A ∈ O(3) is such that det (αA) < 0; that is, this deformation is

an inversion combined with rotation, uniform stretching or shrinking, and translation.

Outside of these very special cases, the compatibility condition C(x) = I(θ(x)) cannot

be satisfied and one cannot expect to find zero-energy deformations. In those cases,

residual stresses will be present in energy-minimizing deformations.

In what follows, we shall try to address the issue of this restrictive compatibility

condition by focusing on the thinness of the film and approximating the full 3D model

by a 2D model. To start with, we make some simplifying assumptions about the de-

formation that the film can undergo. Motivated by the outcomes of various thin film

results (e.g., [1, 3–5, 14, 19, 22, 23, 29–31, 34, 36, 44, 46, 47]), we shall assume that the

deformation u : Ωh → R3 can be expanded around the middle surface2 Ω × {0}

u(x1, x2, x3) = u(x1, x2, 0) + x3
∂u

∂x3
(x1, x2, 0) +

x2
3

2

∂2u

∂x2
3

(x1, x2, 0)

+
x3
3

6

∂3u

∂x3
3

(x1, x2, 0) + o(x3
3) as x3 → 0.

(6)

If we make the identification

y(x1, x2) = u(x1, x2, 0),

b(x1, x2) =
∂u

∂x3
(x1, x2, 0),

c(x1, x2) =
∂2u

∂x2
3

(x1, x2, 0),

d(x1, x2) =
∂3u

∂x3
3

(x1, x2, 0),

(7)

so that we can write

u(x1, x2, x3) = y(x1, x2) + x3b(x1, x2) +
x2
3

2
c(x1, x2) +

x3
3

6
d(x1, x2) + o(x3

3)

as x3 → 0, and if we neglect the highest-order term, we have that as x3 → 0

F = ∇u(x1, x2, x3) =
`
y,1|y,2|b

´
+ x3

`
b,1|b,2|c

´
+

x2
3

2

`
c,1|c,2|d

´
. (8)

In the above, we have used the notation f,i = ∂f
∂xi

= (∂f1
∂xi

, ∂f2
∂xi

, ∂f3
∂xi

)T for a function

f : R3 → R3, and A = (A1|A2|A3) for A ∈ R3×3, where the Ai denote the columns of

A. If we now denote the matrix terms in (8) by F0, F1, and F2, respectively, i.e.,

F0 =
`
y,1|y,2|b

´
,

F1 =
`
b,1|b,2|c

´
,

F2 =
`
c,1|c,2|d

´
,

(9)

2 As in [25], one might start with the expansion in x3 and h simultaneously and find the
energy-minimizing coefficients. Due to the simple geometry considered in this case, with the
middle surface corresponding to x3 = 0, this expansion would reduce to the one given in (6).
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and if in addition we define

C0 = FT
0 F0,

C1 = FT
0 F1 + FT

1 F0,

C2 = FT
0 F2 + FT

2 F0 + 2 FT
1 F1,

(10)

we get that as x3 → 0 the Cauchy–Green strain satisfies

C = FT F =

„
F0 + x3F1 +

x2
3

2
F2

«T „
F0 + x3F1 +

x2
3

2
F2

«
+ o(x2

3)

= FT
0 F0 + x3(F

T
0 F1 + FT

1 F0) +
x2
3

2
(FT

0 F2 + FT
2 F0 + 2 FT

1 F1) + o(x2
3)

= C0 + x3C1 +
x2
3

2
C2 + o(x2

3).

(11)

We note that since y(x1, x2), b(x1, x2), c(x1, x2) and d(x1, x2) do not depend on x3,

the same is true about Fi and Ci for i = 0, 1, 2. We also remark that depending on

the smoothness of u, one can consider more terms in the expansion (6), and thus get

higher-order expansions for F and C.

Combining now (2)–(4) and (11), and utilizing the symmetry of C, we get

W (C, θ) =
1

8
(C − I(θ)) · C(C − I(θ))

=
1

8

»
(C0 − I(θ)) · C(C0 − I(θ)) + x32 (C0 − I(θ)) · CC1

+ x2
3

ˆ
C1 · CC1 + (C0 − I(θ)) · CC2

˜–
+ o(x2

3) as x3 → 0.

Inserting the above expression into (5) and integrating out x3 gives

Eh(u, θ) =
h

8

Z
Ω

»
[C0(x)− I(θ(x))] · C[C0(x)− I(θ(x))]

+
h2

12
[C1(x) · CC1(x) + [C0(x)− I(θ(x))] · CC2(x)]

–
dx

+ o(h3) as h → 0.

(12)

In the expression above, x = (x1, x2) and the integral is taken over the two-dimensional

domain Ω, and it was assumed that the temperature, θ(x), was constant in the x3

direction, which is reasonable for thin films. Note that, as expected, the energy is of

order h, corresponding to the volume of the film. The energy consists of two main

parts. The first term is a “membrane” energy of order h, which captures how much the

dominant term of the right Cauchy–Green strain, C0, deviates from the zero-energy

state. The second term is an energy of order h3, which can be interpreted as a “bending”

energy. We shall discuss this term further in Section 4. We also note that if one further

expanded C in (11) and used a third-order term C3, this term would not affect the

bending energy. Similarly, using a third-order term F3 in the expansion (8) has no

impact on C0, C1, and C2, so the bending energy is now fully described in terms of

F0, F1, F2 and C0, C1, C2.

If W̃ (E) in (4) is not necessarily a quadratic function of E, but is sufficiently

smooth, then we can use the expansion of W̃ (E) (and hence that of W (C)) to expand



11

the energy as follows (we suppress the dependence on x for clarity) and obtain as h → 0

the generalization of (12)

Eh(u, θ) = h

Z
Ω

»
W̃
`

1
2 (C0 − I(θ))

´
+

h2

24

 
1

4
C1 ·

∂2W̃

∂E2

˛̨̨̨
E= 1

2 (C0−I(θ))

C1 +
1

2

∂W̃

∂E

˛̨̨̨
E= 1

2 (C0−I(θ))

· C2

!–
dx

+ o(h3)

= h

Z
Ω

»
W (C0) +

h2

24

 
C1 ·

∂2W

∂C2

˛̨̨̨
C=C0

C1 +
∂W

∂C

˛̨̨̨
C=C0

· C2

!–
dx

+ o(h3).

(13)

Finally, as a special case, let us consider C = C0 +x3C1 +
x2
3

2
C2 in (11). The exact

expression for the energy (12) is then

Eh(u, θ) =
h

8

Z
Ω

»
[C0(x)− I(θ(x))] · C[C0(x)− I(θ(x))]

+
h2

12
[C1(x) · CC1(x) + [C0(x)− I(θ(x))] · CC2(x)] +

h4

340
C2(x) · CC2(x)

–
dx

=
h

8

Z
Ω

»
[C0(x)− I(θ(x)) +

h2

24
C2(x)] · C[C0(x)− I(θ(x)) +

h2

24
C2(x)]

+
h2

12
C1(x) · CC1(x) +

h4

720
C2(x) · CC2(x)

–
dx.

Since this last expression is written as a sum of three squares, it follows that zero-energy

minimizers in this case would have to satisfy C1(x) = C2(x) = 0 and C0(x) = I(θ(x))

in Ω, giving rise to relevant compatibility conditions. If one considers the functions

y, b, c, etc. as decoupled from each other, then these compatibility conditions can be

interpreted in terms of the fundamental forms of the surface y(x1, x2) [16]. For example,

the first 2× 2 block of C0 is (∇y)T (∇y), and C0 = I(θ) now gives a restriction on the

first fundamental form. See the second half of Section 4 for a brief discussion regarding

the second fundamental form. Clearly, these compatibility conditions are less restrictive

than in the full 3D case, but we have not explored this issue (and the relevant Gauss–

Codazzi–Mainardi equations) in greater depth.

4 Relationship to Γ -limit models

We next briefly discuss the relationship of the model from the previous section to those

derived using Γ -convergence techniques. Such techniques give a rigorous meaning to

the convergence of functionals (for general theory, see, e.g., [6,35]), and they have been

useful in the asymptotic analyses of functionals that model the rescaled elastic energy

of films as the thickness converges to zero [1, 3, 4, 14, 19, 22, 23, 34, 36, 44]. The limit-

ing energies are two-dimensional and they can provide more tractable and efficiently

computed models. In what follows, we shall only give a general discussion of the rela-

tionship between our model and those rigorously derived using Γ -convergence, and we

refer the reader to the references above for further details.
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First, notice that the expansion (8) has the leading term F0 = (∇y|b) = (y,1|y,2|b)
by construction, and the “membrane” parts of the energies in (12) and (13) are func-

tions of C0, and hence F0, only. In (8) both y and b are related to the original three-

dimensional deformation u via (7), but in order to minimize these two-dimensional

energies, these terms should be decoupled (as well as c and d). This correlates with the

results obtained by applying Γ -convergence techniques.

In general, since the membrane energy of a film is proportional to the volume of the

film, one usually linearly rescales the film to have thickness 1 and studies the Γ -limit

as h → 0 of the rescaled three-dimensional energy 1
hEh on the rescaled domain.

If the energy functional is defined as an integral of only an elastic energy den-

sity, W , which is viewed as a function of the deformation gradient, ∇u, then, under

suitable assumptions on the energy density and the underlying space of admissible de-

formations u and its topology, it is possible to show that the Γ -limiting functional is

two-dimensional (i.e., independent of the out-of-plane coordinate), and reduces to an

integral of the quasiconvexification of an energy density W3×2 defined on R3×2 via

W3×2(A) = min{W (A|b) : b ∈ R3}.

The two-dimensional energy is then given by E(y) =
R
Ω QW3×2(∇y) dx, where the

quasiconvexification of W3×2 is defined as

QW3×2(F ) = inf


1

|Ω|

Z
Ω

W3×2(F +∇ϕ) dx : ϕ ∈ C1
0 (Ω; R3)

ff
.

This energy is then to be minimized with respect to y (see, e.g., [34]).

Sometimes a regularizing higher-gradient term is added to the three-dimensional

energy functional to model, for instance, energy of interfaces between different phases

of the material [4, 14, 44]. In those cases, passing the rescaled three-dimensional en-

ergy to the Γ -limit as h → 0 yields a limiting two-dimensional energy that containsR
Ω W (∇y|b) dx (plus a higher-gradient term or other terms). Notice that in both of

the cases above a two-stage minimization is involved: minimizing with respect to b

(which plays a role of the out-of-plane gradient), and minimizing with respect to y

(which describes the deformation of the two-dimensional film). The minimizers y and

b of the two-dimensional energy can in many cases be obtained as weak limits of {uh}
and {uh,3}, respectively, where {uh} is a subsequence of minimizers of the rescaled

three-dimensional energy.

Work has been done recently to rigorously derive two-dimensional nonlinear theo-

ries for plates and shells [20–23, 41, 42]. In order to derive the Γ -limit of the bending

energy, which scales like h3, the behavior of the rescaled energy 1
h3

R
Ωh

W (∇u) dx is

studied, where W is frame-indifferent, sufficiently smooth, nonnegative, and vanishing

exactly on SO(3). If, in addition, one assumes a suitable simple growth condition from

below, it can then be shown (see, e.g., [22]) that the Γ -limiting functional has the form

proposed by G. Kirchhoff in 1850 [32]

E(y) =

8>>>><>>>>:
1
24

R
Ω Q2(II) dx

if y ∈ W 2,2(Ω; R3) is an isometry

(i.e., |y,1| = |y,2| = 1, y,1 · y,2 = 0),

+∞ otherwise.

(14)

In the above, II is the second fundamental form of the surface given by

IIij = y,i · (y,1 × y,2),j .
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Q2 is defined for G ∈ R2×2 via

Q2(G) = min
n

Q3(Ĝ|v) : v ∈ R3
o

, where Ĝ =

24G11 G12

G21 G22

0 0

35 (15)

and

Q3(H) = H · ∂2W

∂F 2

˛̨̨̨
F=I

H for H ∈ R3×3.

In order to relate the above result to our model, we should assume that the tem-

perature of the film is constant and low enough so that f(θ) = 0 in (1) and I(θ) = I,

and that the membrane part of the energy is zero. The membrane energy is zero if and

only if C0 = I(θ). Since C0 = FT
0 F0 and F0 = (∇y|b), the membrane energy being

zero translates to the conditions

|y,1| = |y,2| = |b| = 1,

y,1 · y,2 = y,1 · b = y,2 · b = 0.

In particular, y is an isometry and b is the unit normal to the surface. In addition,

b = y,1 × y,2 by virtue of det C0 = 1. The bending energy in (13) now reduces to

Ebending =
h3

24

Z
Ω

C1 ·
∂2W

∂C2

˛̨̨̨
C=I

C1, (16)

where we recall from (9) and (10) that

C1 = FT
0 F1 + FT

1 F0

= (y,1|y,2|b)T (b,1|b,2|c) + (b,1|b,2|c)T (y,1|y,2|b)

=

24II11 II12 y,1 · c
II21 II22 y,2 · c
0 0 b · c

35+

24II11 II12 y,1 · c
II21 II22 y,2 · c
0 0 b · c

35T

.

In the above, we used the fact that since |b| = 1, we also have b · b,i = 0 for i = 1, 2.

Note that

Q3(H) = H · ∂2W (FT F )

∂F 2

˛̨̨̨
F=I

H

= (H + HT ) · ∂2W

∂C2

˛̨̨̨
C=I

(H + HT ),

and hence

C1 ·
∂2W

∂C2

˛̨̨̨
C=I

C1 = Q3

0@24II11 II12 y,1 · c
II21 II22 y,2 · c
0 0 b · c

351A .

Since {y,1, y,2, b} form an orthonormal system in R3, we can view y,1 · c, y,2 · c, and

b · c as independent variables and minimize them out as in the definition of Q2 in (15).

Thus, the asymptotically derived bending energy (16) agrees formally with the bending

energy (14) obtained by using Γ -convergence techniques.
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It is noted in [22] that for the special case of an isotropic material, minimizing out

v in (15) yields the Γ -limiting functional of the form

E(y) =

8>>><>>>:
1

24

Z
Ω

„
2λµ

λ + 2µ
(tr II)2 + 2µ|II|2

«
dx if y ∈ W 2,2(Ω; R3) is an isometry,

+∞ otherwise,

which turns out to be the same as the bending energy in Koiter’s shell model in the

next section.

5 Comparison to Koiter’s shell model

We now briefly discuss the similarities and differences between our model and Koiter’s

shell model [16,33], which has become a computationally popular model for shells and

plates as it combines both a membrane and a bending energy. Since our reference

configuration is flat, we shall only compare our model to the corresponding plate case

of Koiter’s model with a flat reference configuration. Unlike our model, Koiter’s model

only deals with a deformation of the middle surface of the shell/plate, so the reference

configuration is the two-dimensional domain Ω ⊂ R2. The first fundamental form (the

2× 2 equivalent of the right Cauchy–Green strain) of the reference configuration is the

identity matrix I2 ∈ R2×2, and the second fundamental form is identically zero. For

the deformed configuration, y(Ω), the components of the first and second fundamental

forms are given by (α, β = 1, 2)

Iαβ = Cαβ = y,α · y,β , and IIαβ = y,α · nβ with n =
y,1 × y,2

|y,1 × y,2|
.

If one now defines the “change of metric tensor”, G, to be one half of the difference

between the first fundamental forms, G = 1
2 (I−I2), and a “change of curvature tensor”,

R, to be the difference between the second fundamental forms, R = II, then, for a film

of thickness 2ε, the energy functional proposed by Koiter takes the form (see [16])

EK(y) =
1

2

Z
Ω

»
εaαβστGαβ(y)Gστ (y) +

ε3

3
aαβστRαβ(y)Rστ (y)

–
dx,

where (with δij being the Kronecker delta)

aαβστ =
4λµ

λ + 2µ
δαβδστ + 2µ(δασδβτ + δατ δβσ).

For h = ε/2 and after some simplifications, this energy functional becomes

EK(y) =

Z
Ω

»
h

2

„
2λµ

λ + 2µ
(tr G)2 + 2µ|G|2

«
+

h3

24

„
2λµ

λ + 2µ
(tr II)2 + 2µ|II|2

«–
dx.

Note that the h3-part of the energy agrees with the bending energy derived by Γ -

convergence methods and given at the end of Section 4, so under the same assumptions

as in Section 4, the bending energy in Koiter’s model agrees with the bending energy

in our model.

On the other hand, the membrane energy part of EK does not agree with that in

our model, even if one uses as a starting point the quadratic isotropic energy density
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1
2E ·CE = 1

2

h
λ(tr E)2 + 2µ|E|2

i
. The membrane energy density in our 3D model just

before integrating out x3 is a function of the strain E of the form

E =
1

2
(C0 − I3) =

1

2

0@24 |y,1|2 y,1 · y,2 y,1 · b
y,1 · y,2 |y,2|2 y,2 · b
y,1 · b y,2 · b |b|2

35− I3

1A ,

and therefore, if b is assumed to be the unit normal vector to the deformed configuration

y(Ω), then tr E = tr G and |E| = |G| with G as above, so that the membrane energy

density in our model (after integrating out x3) becomes

h

2

“
λ (tr G)2 + 2µ|G|2

”
,

which is different from the membrane energy of EK . However, if one was allowed to

minimize out the vector b (which, of course, would then affect the bending energy

part!), then one obtains, similarly as discussed at the end of Section 4, that the energy

density is
h

2

„
2λµ

λ + 2µ
(tr G)2 + 2µ|G|2

«
,

agreeing with Koiter’s model.

A few additional differences are worth pointing out. First, the derivation of Koiter’s

model starts out assuming that stresses away from the middle surface are planar and

parallel to the middle surface. In our model, no a priori assumptions are placed on

the vectors y, b, etc. in the expansion u(x1, x2, x3) = y(x1, x2) + x3b(x1, x2) + . . . as

defined in Section 3 (for example, b does not necessarily remain normal to the deformed

surface, nor does it have to remain unit). From a computational point of view, both the

membrane energy and the bending energy are easier to evaluate with a vector b(x1, x2)

independent of y(x1, x2), than if it were the vector b(x1, x2) =
y,1 × y,2

|y,1 × y,2|
, so we feel

that our model allows for more flexibility than Koiter’s model. In addition, in our

model higher-order terms in powers of h can be retained in the energy for additional

corrections when the thickness h of the film becomes more significant. Finally, it is

straightforward to extend our model to non-isotropic materials by modifying the energy

density in (13).

6 Numerical results

In this section, we present numerical results for a variety of static heating programs

applied to square free-standing films. After rescaling the dimensions of the film, we may

assume that Ω = (0, 1)× (0, 1) with the thickness of the film, h, rescaled appropriately.

The energy to be minimized is given by the first two terms of (12),

Eh(u, θ) =
h

8

Z
Ω

»
[C0(x)− I(θ(x))] · C[C0(x)− I(θ(x))]

+
h2

12
[C1(x) · CC1(x) + [C0(x)− I(θ(x))] · CC2(x)]

–
dx.

(17)

For simplicity, the sought deformation, u(x1, x2, x3), shall be approximated by the first

two terms, y(x1, x2) and b(x1, x2), in (7), i.e., we shall assume that u(x1, x2, x3) =
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y(x1, x2)+x3b(x1, x2) and minimize the energy (17) with respect to y and b, viewed as

two independent functions related only via the energy (17). The function y describes

the deformation of the middle section of the film (where x3 = 0); the function b is

sometimes referred to as a Cosserat vector describing the deformation of the cross-

sections of the film. We shall use triangular finite element methods to minimize the

energy; in the computational results described below, the domain Ω was divided into

128× 128 squares and each square then subdivided into 2 triangles. On these meshes,

the function y shall be approximated by the quadratic Morley finite element and the

function b by a continuous piecewise linear element [7, 15]. With this choice of finite

elements, the energy (17) becomes an integral of piecewise quartic polynomials. To

perform the quadrature exactly, we shall use the 7-point Gaussian quadrature rule

described in [17] and exact for polynomials of degree 5. Finally, the energy shall be

minimized by a variant of the Fletcher–Reeves conjugate gradient algorithm [24,43] that

has been used successfully by one of the authors to minimize similar energy functionals

in [8–13].

From the discussion in Section 2 it follows that we can assume that our Melinex

material is isotropic and hence its elastic properties are fully described by its Young’s

modulus and its Poisson’s ratio. We shall make the simplifying assumption that these

material constants do not change with temperature. Representative values of Young’s

modulus and Poisson’s ratio are 3 GPa and 0.35, respectively, and these values shall

be used in all subsequent numerical results.3

The function f(θ) introduced in (1) via the identity I(θ) = (1 − f(θ))I for the

energy-minimizing Cauchy–Green strain can be obtained as follows. The discussion in

Section 2 suggests that a uniformly heated material shrinks uniformly in all directions.

For such deformations, the deformation gradient is constant, and, by the polar decom-

position theorem, we have F = RU with R ∈ SO(3) and U = (1 − s(θ))I being a

diagonal matrix with diagonal entries of the form 1 − s(θ), where s(θ) is the amount

of shrinkage at the temperature θ. Referring to Figures 1 and 2, it is reasonable to

assume that s(θ) can be approximated by a piecewise linear function of the form

s(θ) =

8<:0 for θ ≤ 80,
θ − 80

700
for 80 < θ ≤ 150,

so that there is no shrinkage at 80◦C, 10% shrinkage at 150◦C, and the shrinkage

is linear between 80◦C and 150◦C. Hence, at the temperature θ, the energetically

preferred Cauchy–Green strain is

I(θ) = FT F = (1− s(θ))2I = (1− f(θ))I,

where f(θ) = 2s(θ)− s2(θ).

We shall now describe several of the computational results. Since any nonconstant

distribution of temperature cannot be handled by standard methods of thermodynam-

ics, one might expect a certain prevalent mechanism of heat transfer for our system.

3 The values of Young’s modulus and Poisson’s ratio have been measured by 3M. The mod-
ulus was obtained from tensile tests performed on the film at ambient conditions and at a
strain rate of 10%/min. The Poisson’s ratio was obtained from measurements performed on
a different but similar PET material. That measurement itself was also a tensile test but the
specimen was patterned and the Poisson’s ratio determined using digital image correlation to
measure both the longitudinal and transverse strains during the test. The Poisson’s ratio was
then determined from the negative slope of a plot of the transverse versus longitudinal strain.
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Fig. 3 An experimentally obtained temperature distribution obtained by aiming a heat gun
at the center of a square film. Notice the heat gun in the upper left corner.

Some of our simulations correspond to aiming a hot-air gun, or a heat gun, at par-

ticular points on the surface of the film. With a heat gun, the primary mechanism

of delivering heat to the film is by radiation, and the heat is removed by conduction,

which is a much slower process than radiation [48]. For this reason, we shall assume

that we can temporarily “freeze” the temperature distribution in the film and that it

corresponds to a reasonable heat distribution generated by a heat gun. An example of

a temperature distribution within the film resulting from using a heat gun is shown in

Figure 3.

The first three sets of results (Figures 4, 5, and 6) correspond to aiming a heat

gun at a particular point on the surface of the film. The results in Figure 4 can be

thought of as corresponding to the heat gun being aimed at the center of the film and

being “far” from the surface of the film, so that the heat/temperature profile is more

diffused and the temperature at the center of the film is lower compared to the results

in Figure 5, which can be thought of as having a more focused heat gun closer to the

film (still pointing at the center) so that the temperature is higher at the center of

the film. The results in Figure 6 correspond to the same, focused beam of heat as in

Figure 5, but this time aimed at the center of the upper left quarter of the film. The

temperature distributions are assumed to be Gaussian with the maximum temperatures

being 100◦C for the results in Figure 4 and 120◦C for the results in Figures 5 and 6.

For the more diffused distribution in Figure 4, the temperature is 80◦C for points along

the circle of radius 0.5 away from the center of the film, and for Figures 5 and 6 it is

80◦C for points along the circle of radius 0.15 away from the point experiencing the

highest temperature. All three temperature distributions are offset by 20◦C (assumed

to be the room temperature). Mathematically, the results in Figure 4 correspond to

the temperature function

θ(x1, x2) = 20 + 80 exp

„
− (x1 − 0.5)2 + (x2 − 0.5)2

0.152
log

80

60

«
, (18)

the results in Figure 5 to

θ(x1, x2) = 20 + 100 exp

„
− (x1 − 0.5)2 + (x2 − 0.5)2

0.152
log

100

60

«
, (19)

and the results in Figure 6 to

θ(x1, x2) = 20 + 100 exp

„
− (x1 − 0.25)2 + (x2 − 0.75)2

0.152
log

100

60

«
. (20)
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Fig. 4 Computed deformations for the temperature distribution (18) and thicknesses of
12.5 µm, 50 µm, 100 µm, and 500 µm for a square film of size 20 cm by 20 cm.

Fig. 5 Computed deformations for the temperature distribution (19) and thicknesses of
12.5 µm, 50 µm, 100 µm, and 500 µm for a square film of size 20 cm by 20 cm.

In all of the Figures 4–8, the yellow color corresponds to 80◦C, the lowest tem-

perature above which shrinkage should occur. Each figure displays four computational

results, corresponding, in physical units, to square films with the square base of size 20

cm by 20 cm, and with four different thicknesses: 12.5 µm and 50 µm in the upper row,

and 100 µm and 500 µm in the lower row. We note that the results corresponding to

Figures 4–6 are conceptually very similar. Shrinkage should occur inside a circle, and

the amount of shrinkage decreases as the distance from the center of the circle increases.

Hence, there is a competition between the circular region, where, from the energetical
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Fig. 6 Computed deformations for the temperature distribution (20) and thicknesses of
12.5 µm, 50 µm, 100 µm, and 500 µm for a square film of size 20 cm by 20 cm.

point of view, shrinkage is preferred, and the surrounding region that prefers to stay

in the unshrunk form.

The results in Figure 7 correspond to heating two opposite edges of the film so

that the film prefers to shrink inside of two narrow strips along the two edges while

trying to stay in the unshrunk form in the wide center strip. The temperature profile

is constructed as a combination of two Gaussians

θ(x1, x2) = 20 + 80

»
exp

„
− x2

2

0.252
log

160

60

«
+ exp

„
− (1− x2)

2

0.252
log

160

60

«–
. (21)

The temperature along the edges x2 = 0 and x2 = 1 is ≈ 100◦C, along the center line

x2 = 0.5 it is ≈ 23◦C, and it is ≈ 80◦C along the lines x2 = 0.135 and x2 = 0.865. As

expected, for small thicknesses there is a significant number of pleats extending from

the edges experiencing the high temperatures into the low-temperature region. As the

thickness of the film increases, the bending energy increases for a particular deforma-

tion, so, as a result, the number of pleats in the deformed configuration decreases. We

observe that for the film of thickness 500 µm there are no visible pleats and the film

has deformed into a shape that appears to have positive Gaussian curvature every-

where. We note that when this resulting deformation was used as an initial guess for

the deformations corresponding to smaller thicknesses, the resulting energy-minimizing

deformations looked very similar, suggesting that one should be able to bend (without

much or any stretching) the deformed films corresponding to smaller thicknesses to the

shape corresponding to the thicker one.

Finally, let us discuss the results in Figure 8. In this case, the center line x2 = 0.5

is heated to ≈ 130◦C, while the edges x2 = 0 and x2 = 1 experience the lowest

temperature of ≈ 80◦C. More precisely, the temperature distribution is given by

θ(x1, x2) = 80 + 700 (1.0− a cosh(b (x2 − 0.5))) , (22)

where a ≈ 0.92857 and b ≈ 0.77952. In this case, since the temperature is greater

than or equal to 80◦C everywhere, the whole surface will experience shrinkage. The
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Fig. 7 Computed deformations for the temperature distribution (21) and thicknesses of
12.5 µm, 50 µm, 100 µm, and 500 µm for a square film of size 20 cm by 20 cm.

Fig. 8 Computed deformations for the temperature distribution (22) and thicknesses of
12.5 µm, 50 µm, 100 µm, and 500 µm for a square film of size 20 cm by 20 cm.

center strip near the line x2 = 0.5 is being shrunk the most, with shrinkage of about

7%, while the edges x2 = 0 and x2 = 1 should undergo zero shrinkage barring any

elastic competition effects. We see in Figure 8 that the film again exhibits the most

wrinkling for smaller thicknesses and, as expected, the wrinkles start to disappear as

the thickness of the film increases. For the 500 µm film, there is no apparent wrinkling

and all of the curvature is distributed quite evenly over the whole surface. In this

case, the surface appears to have negative Gaussian curvature everywhere and a shape

of a catenoid. Again, when this resulting deformation was used as an initial guess for

the deformations corresponding to smaller thicknesses, the resulting energy-minimizing
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deformations again looked very similar, suggesting that one should be able to bend the

deformed films corresponding to smaller thicknesses to the catenoidal shape.

7 Conclusions

In this paper, we have proposed a simple mathematical model for the behavior of a

class of heat-shrinkable polymer-based thin films represented by a DuPont’s Melinex

polyester film. Based on experiments, it has been determined that these materials

behave more-or-less isotropically and exhibit shrinkage that depends on the highest

temperature the film has been exposed to. Using the concept of a “preferred” Cauchy–

Green strain for a given high temperature in the material’s history, we defined a three-

dimensional energy for the material that depends on the amount of additional strain.

Using asymptotic expansions for the deformation, its gradient, its right Cauchy–Green

strain, and the energy functional, we were able to obtain a two-dimensional energy,

whose lowest-order terms can be interpreted as a membrane energy and a bending

energy, respectively. This energy was then compared to those obtained by using Γ -

convergence techniques and that in Koiter’s shell model, and agreement was found in

the bending energies under some a priori unifying assumptions, while a slight disagree-

ment was found between all of the membrane energies. Finally, using the developed

model, numerical results have been presented for various temperature distributions

applied to free-standing films, and a qualitative agreement was found with experimen-

tal results. In addition, it was demonstrated that various possible deformations are

possible that include those with everywhere positive or everywhere negative Gaussian

curvature.
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