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Previous analyses of Laguerre’s iteration method have provided results on the behavior of this popular method when applied to the
polynomials 𝑝

𝑛
(𝑧) = 𝑧

𝑛

− 1, 𝑛 ∈ N. In this paper, we summarize known analytical results and provide new results. In particular,
we study symmetry properties of the Laguerre iteration function and clarify the dynamics of the method. We show analytically
and demonstrate computationally that for each 𝑛 ≥ 5 the basin of attraction to the roots is a subset of an annulus that contains
the unit circle and whose Lebesgue measure shrinks to zero as 𝑛 → ∞. We obtain a good estimate of the size of the bounding
annulus. We show that the boundary of the basin of convergence exhibits fractal nature and quasi self-similarity. We also discuss
the connectedness of the basin for large values of 𝑛. We also numerically find some short finite cycles on the boundary of the basin
of convergence for 𝑛 = 5, ..., 8. Finally, we demonstrate that when using the floating point arithmetic and the general formulation of
the method, convergence occurs even from starting values outside of the basin of convergence due to the loss of significance during
the evaluation of the iteration function.

1. Introduction

Laguerre’s iteration method (also referred to as Laguerre’s
method in this paper) for approximating roots of polynomials
[1] is one of the least understood methods of numerical
analysis. It exhibits cubic convergence to simple roots of
(complex) polynomials and linear convergence to multiple
roots, thus outperforming the well-known Newton’s method
that exhibits quadratic convergence to simple roots [2] or
even the widely used and globally convergent Jenkins-Traub
method, which has the order of convergence of (at least) 1+𝜙,
where 𝜙 = (1 + √5)/2 is the golden ratio [3, 4]. Although
Laguerre’smethod is implemented inNumerical Recipes [5], it
is often overlooked in designing professional software.This is,
perhaps, due to the lack of complete analytical understanding
of the method. However, some of the known results make
it an excellent candidate in many situations. For example,
it is known that the method exhibits global convergence
(convergence from any initial guess) for real polynomials
with real roots [3, 6]. It also allows for automatic switching to

the complex domain if there are no real roots; this is due to the
appearance of a square root in the definition of the method
(see (2) in the next section). In general, although convergence
is not guaranteed for all complex starting values, the method
seems to perform very well in many cases [2].

It is the goal of this paper to provide additional insights
into the performance of Laguerre’s method when applied
to simple polynomials of the form 𝑧

𝑛

− 1. We primarily
follow the work of Ray [7] and Curry and Fiedler [8] but
provide additional details and clear proofs of all results. In
addition, we provide computational results that demonstrate
the poor performance of the method when 𝑛 is large and
exact arithmetic is used. This is due to the fact that the basin
of convergence to the roots is contained in an annulus that
shrinks towards the unit circle 𝑆

1 as 𝑛 increases. Points in the
complement of the annulus converge to the two-cycle {0,∞}.
We also show that the boundary of the basin of convergence
has fractal characteristics and becomes quite interesting for
large 𝑛. Finally, we present some examples to demonstrate
that in the floating-point arithmetic the method in its general
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Figure 1: Sets of significance for 𝑛 = 16. The thick solid curves are
𝜕𝐷, 𝑆1, and 𝜕𝐸, and they divide C \ {0} into the regions 𝐷, 𝐾

0
, 𝐾
1
,

and 𝐸. The dots indicate the positions of the roots, the thick dashed
lines are Θ

1
, and the thin dotted lines are Θ

0
. The gray annuli are

discussed in Remark 5.

formulation (2) eventually converges from seemingly any
initial complex value due to the loss of significance.This thus
ironically contributes to the practicality of the method in this
case, and it remains to be seen whether this is also the case
for general polynomials.

We organize the paper similarly as in [8]. In Section 2, we
introduce the method, briefly summarize known results, and
provide a simpler expression for the method when applied to
the polynomials 𝑝

𝑛
(𝑧) = 𝑧

𝑛

− 1. In Section 3, we formulate
and prove three propositions regarding the symmetry prop-
erties of the iteration function for𝑝

𝑛
that simplify the analysis

in the following sections. Sets in the complex plane that will
play a significant role in the study of the dynamics are defined
in Section 4, and their algebraic characterization is provided
in the same section. The dynamics of the method on the unit
circle and in the neighborhood of the two-cycle {0,∞} is
studied in Sections 5.1 and 5.2, respectively. In Section 5.3
we provide proofs of convergence to the roots of unity when
the initial guess is in a relevant annulus containing the unit
circle.The boundary of the basin of convergence is contained
in two annuli shown as the “gray areas” in Figure 1, and
some relevant numerical results pertinent to the boundary
are shown in Section 6.We conclude with Section 7, in which
we summarize some of the open questions, and demonstrate
the “convergence” of the method even from the basins of
attraction of the two-cycle {0,∞}.

2. Laguerre’s Iteration Method

In this section, we provide the basic details of Laguerre’s
method, mention known results, and apply themethod to the
polynomials 𝑝

𝑛
(𝑧) = 𝑧

𝑛

− 1 with 𝑛 ≥ 2 and 𝑧 ∈ C. We will

denote by 𝑧
1/2 the set of the two solutions {𝑤, −𝑤} ⊂ C such

that𝑤2 = 𝑧 (unless, of course, 𝑧 = 0, inwhich case𝑤 = 0).We
will use the notation√𝑧 for the principal square root of 𝑧; that
is, if 𝑧 = 𝑟𝑒

𝑖𝜃 with 𝑟 > 0 and −𝜋 < 𝜃 ≤ 𝜋, then√𝑧 = √𝑟𝑒
𝑖𝜃/2 is

the principal value for the square root with argument in the
interval (−𝜋/2, 𝜋/2].

Laguerre’s iterationmethod for complex polynomials𝑝 (𝑧)

of degree 𝑛 ≥ 2 is defined as [1, 3]

𝑧
𝑘+1

= 𝐿 (𝑧
𝑘
) (𝑧

0
∈ C given) , (1)

where 𝐿 (𝑧) denotes the Laguerre iteration function [9] given
by

𝐿 (𝑧)

= 𝑧 −
𝑛𝑝 (𝑧)

𝑝󸀠 (𝑧) ± √(𝑛 − 1)
2

(𝑝󸀠 (𝑧))
2

− 𝑛 (𝑛 − 1) 𝑝 (𝑧) 𝑝󸀠󸀠 (𝑧)

= 𝑧 −
𝑛

𝐺 (𝑧) ± √(𝑛 − 1) (𝑛𝐻 (𝑧) − 𝐺2 (𝑧))

,

(2)

where

𝐺 (𝑧) =
𝑝
󸀠

(𝑧)

𝑝 (𝑧)
, 𝐻 (𝑧) = 𝐺

2

(𝑧) −
𝑝
󸀠󸀠

(𝑧)

𝑝 (𝑧)
, (3)

and where the signs are chosen so as to maximize the
modulus of the denominators.

2.1. Known Results. It is known that Laguerre’s method
exhibits cubic convergence to a simple root and linear
convergence to a multiple root [2, 3]. It is also known that for
a real polynomial with real roots, the method converges to a
root from any initial guess 𝑧

0
∈ R [3]. A particular feature

of interest is that even if the initial guess is a real number,
convergence to a complex root can occur due to the square
root in the denominator of (2). In many cases, the method
seems to converge to a root from any initial guess in the
complex plane, although this is not the case in general [7].
For example, consider the polynomial 𝑝

𝑛
(𝑧) = 𝑧

𝑛

− 1 with
𝑛 ≥ 3, for which both the first and the second derivative
vanish at 𝑧 = 0, and 𝐿 (0) is undefined (in what follows, we
will consider the extended complex plane Ĉ = C∪{∞} so that
𝐿 (0) = ∞ and 𝐿 (∞) = 0, and {0,∞} forms a two-cycle of
the method). It is also known [10] that if 𝑝 (𝑧) is a polynomial
of degree 𝑛 and 𝑧 ∈ C, then there exists a root 𝑧∗ of 𝑝 such
that |𝑧 − 𝑧

∗

| ≤ √𝑛|𝑧 − 𝐿 (𝑧)|.
The Laguerre iteration function (2) is sometimes claimed

to be invariant under Möbius transformations [2, 11],
although the correct, weaker statement is given and proved
in [7]. For the classes of quadratics and cubics of the form
𝑝
𝑐
(𝑧) = 𝑧

2

+𝑐 and𝑝
𝜆
(𝑧) = (𝑧−1) (𝑧

2

+𝑧+𝜆), respectively, with
𝑐, 𝜆 ∈ C, the Laguerre iteration function (2) can be shown to
not have any free critical points [11], and a generalization to
all complex quadratics and cubics is suggested based on the
invariance under Möbius transformations.
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2.2. Roots of Unity. When applied to the polynomial 𝑝
𝑛
(𝑧) =

𝑧
𝑛

− 1, 𝑛 ≥ 2, the Laguerre iteration function (2) for 𝑧 ̸= 0

simplifies to

𝐿 (𝑧) = 𝑧
𝑧
−𝑛/2

± (𝑛 − 1)

𝑧𝑛/2 ± (𝑛 − 1)
, (4)

where again the sign is chosen to maximize the modulus of
the denominator. Using the principal square root of 𝑧𝑛, which
will result in an expression with a nonnegative real part, we
can rewrite 𝐿 (𝑧) as 𝐿

𝑝
(𝑧) given by

𝐿
𝑝
(𝑧) = 𝑧

1/√𝑧𝑛 + (𝑛 − 1)

√𝑧𝑛 + (𝑛 − 1)
. (5)

We note that the roots of 𝑝
𝑛
are exactly the fixed points of

𝐿
𝑝
, and it is easy to check that the derivative of 𝐿

𝑝
vanishes

at the roots, so they are attracting fixed points, and each has
an open neighborhood contained in its immediate basin of
attraction.

It is straightforward to check that in the case 𝑛 = 2 the
method converges in one iteration for any initial guess 𝑧

0
∈

C. If Re (𝑧
0
) > 0, or if Re (𝑧

0
) = 0 and Im (𝑧

0
) ≥ 0, then

𝐿
𝑝
(𝑧
0
) = 1; otherwise 𝐿

𝑝
(𝑧
0
) = −1.

In the cases with 𝑛 ≥ 3, the method has a two-cycle
consisting of 0 and ∞ in the extended complex plane Ĉ.
Other than this two-cycle, the method is globally convergent
for 𝑛 = 3, 4 [7, 8].

The behavior of Laguerre’smethod is quite different in the
cases with 𝑛 ≥ 5 and is the subject of our interest. In the
following sections, we closely follow the analysis of Curry and
Fiedler [8], which in turn is based on the work of Ray [7].
We provide additional insights and graphical illustrations for
some of the results. While the main focus will be on the cases
with 𝑛 ≥ 5, if a result applies more generally, we will state so.

For future reference, we note that for 𝑟 > 0, we have [8]
󵄨󵄨󵄨󵄨󵄨
𝐿
𝑝
(𝑟𝑒
𝑖𝜃

)
󵄨󵄨󵄨󵄨󵄨

2

=
1

𝑟𝑛−2
(
1 + (𝑛 − 1)

2

𝑟
𝑛

+ 2 (𝑛 − 1) |cos (𝑛𝜃/2)| 𝑟𝑛/2

𝑟𝑛 + (𝑛 − 1)
2

+ 2 (𝑛 − 1) |cos (𝑛𝜃/2)| 𝑟𝑛/2
) .

(6)

3. Symmetry Properties of the Laguerre
Iteration Function

When applied to the polynomials 𝑝
𝑛
(𝑧) = 𝑧

𝑛

− 1, 𝑛 ≥ 2, the
Laguerre iteration function (5) has several symmetry proper-
ties that simplify the analysis of the method in the extended
complex plane Ĉ. In particular, the function possesses an 𝑛-
fold rotational symmetry around the origin, a symmetry with
respect to the real axis, and also an inversion symmetry with
respect to the unit circle. In Propositions 1–3 we provide the
precise statements.

We will use the slightly imprecise notation of [8] and
denote by 𝜃

0
and 𝜃

1
any of the following angles for 𝑘 =

0, . . . , 𝑛 − 1:

𝜃
0
=

2𝑘𝜋

𝑛
, 𝜃

1
=

(2𝑘 + 1) 𝜋

𝑛
. (7)

In addition, we define the rays

Θ
0
= {𝑟𝑒
𝑖𝜃0 ∈ C : 𝑟 > 0} , Θ

1
= {𝑟𝑒
𝑖𝜃1 ∈ C : 𝑟 > 0} . (8)

Note that the roots of 𝑝
𝑛
lie on the raysΘ

0
, while the raysΘ

1

divide the complex plane into 𝑛 congruent sectors bisected by
the rays Θ

0
.

The following proposition implies that it suffices to study
the behavior of𝐿

𝑝
in the sector {𝑧 ∈ C : −𝜋/𝑛 < arg 𝑧 ≤ 𝜋/𝑛},

that is, between two consecutive raysΘ
1
, and the rest follows

by rotational symmetry.This is a special case of the invariance
of themethodwith respect to certainMöbius transformations
[2, 7].

Proposition 1. For 𝑛 ≥ 2, the Laguerre iteration function 𝐿
𝑝

defined in (5) commutes with the rotation by an angle𝛼 = 2𝜋/𝑛

about the origin.

Proof. Let 𝑇
𝛼
denote the rotation by an angle 𝛼 = 2𝜋/𝑛

about the origin; that is, 𝑇
𝛼
(𝑧) = 𝑒

𝑖𝛼

𝑧. Since (𝑇
𝛼
(𝑧))
𝑛

= 𝑧
𝑛,

substituting into (5), we get for any 𝑧 ∈ Ĉ

𝐿
𝑝
(𝑇
𝛼
(𝑧)) = 𝑒

𝑖𝛼

𝑧
1/√𝑧𝑛 + (𝑛 − 1)

√𝑧𝑛 + (𝑛 − 1)

= 𝑒
𝑖𝛼

𝐿
𝑝
(𝑧) = 𝑇

𝛼
(𝐿
𝑝
(𝑧)) ,

(9)

and the result follows.

The following proposition implies that the behavior of 𝐿
𝑝

in the sector {𝑧 ∈ C : −𝜋/𝑛 < arg 𝑧 < 𝜋/𝑛} is symmetric
with respect to the real axis. In the case when arg (𝑧) = 𝜃

1
,

Proposition 1 applies.

Proposition 2. For 𝑛 ≥ 2 and 𝑧 ∈ C with arg 𝑧 ̸= 𝜃
1
, the

Laguerre iteration function 𝐿
𝑝
defined in (5) commutes with

the complex conjugation 𝑧 󳨃→ 𝑧.

Proof. If arg 𝑧 ̸= 𝜃
1
, then √(𝑧)

𝑛

= √𝑧𝑛. Consequently,
𝐿
𝑝
(𝑧) = 𝐿

𝑝
(𝑧), and the result follows.

Finally, the Laguerre iteration function (5) also exhibits
inversion symmetry with respect to the unit circle as shown
in the next proposition.

Proposition 3. For 𝑛 ≥ 2, the Laguerre iteration function 𝐿
𝑝

defined in (5) commutes with the inversion with respect to the
unit circle 𝑆1 = {𝑧 ∈ C : |𝑧| = 1}; that is, 𝐿

𝑝
(1/𝑧) = 1/𝐿

𝑝
(𝑧).

Proof. Consider first 𝑧 ∈ C with arg 𝑧 ̸= 𝜃
1
. Using the same

conjugation properties as in the proof of Proposition 2, we
have

𝐿
𝑝
(
1

𝑧
) =

1

𝑧

1/√(1/𝑧)
𝑛

+ (𝑛 − 1)

√(1/𝑧)
𝑛

+ (𝑛 − 1)

=
1

𝐿
𝑝
(𝑧)

=
1

𝐿
𝑝
(𝑧)

.

(10)
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We can then check by direct substitution that the same result
holds also when arg (𝑧) = 𝜃

1
, and the conclusion of the

proposition follows.

In summary, it is enough to study the behavior of the
method in the set {𝑟𝑒𝑖𝜃 : 0 ≤ 𝑟 ≤ 1, 0 ≤ 𝜃 ≤ 𝜋/𝑛}, since
the rest follows by the symmetries above.

4. Significant Sets in the Complex Plane

Consider from now on the polynomial 𝑝
𝑛
(𝑧) = 𝑧

𝑛

− 1 with
𝑛 ≥ 5 and the corresponding Laguerre iteration function
𝐿
𝑝
given by (5). Following [8], we start by defining several

sets in the extended complex plane Ĉ relevant to the study of
the dynamics of Laguerre’s method. We will provide relevant
results, some of which are proved in [8].

It is stated in [8] that the sets in (11) below “contain all
the dynamics” of (5). This is not quite true, as will be shown
in Section 6, although these sets are of significance in the
analysis. They divide C \ {0} into disjoint subsets and are
defined as

𝐷 ={𝑧 ∈ C : 0 < |𝑧| < 1,
󵄨󵄨󵄨󵄨󵄨
𝐿
𝑝
(𝑧)

󵄨󵄨󵄨󵄨󵄨
>

1

|𝑧|
} ,

𝜕𝐷 ={𝑧 ∈ C : 0 < |𝑧| < 1,
󵄨󵄨󵄨󵄨󵄨
𝐿
𝑝
(𝑧)

󵄨󵄨󵄨󵄨󵄨
=

1

|𝑧|
} ,

𝐾
0
={𝑧 ∈ C : 0 < |𝑧| < 1,

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑝
(𝑧)

󵄨󵄨󵄨󵄨󵄨
<

1

|𝑧|
} ,

𝑆
1

= {𝑧 ∈ C : |𝑧| = 1} ,

𝐾
1
={𝑧 ∈ C : |𝑧| > 1,

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑝
(𝑧)

󵄨󵄨󵄨󵄨󵄨
>

1

|𝑧|
} ,

𝜕𝐸 ={𝑧 ∈ C : |𝑧| > 1,
󵄨󵄨󵄨󵄨󵄨
𝐿
𝑝
(𝑧)

󵄨󵄨󵄨󵄨󵄨
=

1

|𝑧|
} ,

𝐸 ={𝑧 ∈ C : |𝑧| > 1,
󵄨󵄨󵄨󵄨󵄨
𝐿
𝑝
(𝑧)

󵄨󵄨󵄨󵄨󵄨
<

1

|𝑧|
} .

(11)

Note that, due to the use of the principal square root in (5), 𝐿
𝑝

is continuous everywhere inC\ {0} except across the raysΘ
1
;

however, |𝐿
𝑝
| is continuous across Θ

1
, so the notations 𝜕𝐷

and 𝜕𝐸 are justified, since 𝜕𝐷 and 𝜕𝐸 are the boundaries of𝐷
and𝐸, respectively, inC\{0}. For future referencewe note that
𝐿
𝑝
is “counter-clockwise” continuous across the raysΘ

1
.That

is, if 𝑧 → 𝑟𝑒
𝑖𝜃1 with arg 𝑧 < 𝜃

1
, then 𝐿

𝑝
(𝑧) → 𝐿

𝑝
(𝑟𝑒
𝑖𝜃1).

This is not the case in the “clockwise” direction.
As in [7, 8], we next focus on the algebraic characteriza-

tion of 𝜕𝐷 and 𝜕𝐸. This will lead to a definition and study
of a “characteristic function” (14) below that will allow us to
determine the shapes of the boundary curves as shown in
Figure 1. The figure provides an illustration of the sets in (8)
and (11) for 𝑛 = 16; the cases with other values of 𝑛 are similar.
In the figure, the three thick solid curves correspond to the
solutions of (13) below and are, in the order of increasing
distance from the origin, 𝜕𝐷, 𝑆1, and 𝜕𝐸. They divide C \ {0}

into four regions:𝐷,𝐾
0
,𝐾
1
, and 𝐸 (innermost to outermost).

The dots indicate the positions of the roots of 𝑝
𝑛
. The thick

dashed lines are the raysΘ
1
, while the thin dotted lines are the

rays Θ
0
. The thin dashed circles have radii 𝑠

0
< 𝑟
0
< 1/𝑟
0
<

1/𝑠
0
as defined in (18) in Remark 5 below.
Writing 𝑧 = 𝑟𝑒

𝑖𝜃, 0 < 𝑟 < ∞, we note that both 𝜕𝐷 and
𝜕𝐸 are characterized by the same equation:

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑝
(𝑧)

󵄨󵄨󵄨󵄨󵄨
=

1

|𝑧|
or 󵄨󵄨󵄨󵄨󵄨𝐿𝑝 (𝑟𝑒

𝑖𝜃

)
󵄨󵄨󵄨󵄨󵄨
=

1

𝑟
. (12)

Using (6), (12) is equivalent to [7, 8]

𝑓
𝑛
(𝑟, 𝜃) = 0, (13)

where the “characteristic function” 𝑓
𝑛
is defined as

𝑓
𝑛
(𝑟, 𝜃) = 𝑟

2𝑛−4

+ 2 (𝑛 − 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
cos 𝑛𝜃

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑟
𝑛/2

(𝑟
𝑛−4

− 1)

− (𝑛 − 1)
2

𝑟
𝑛

+ (𝑛 − 1)
2

𝑟
𝑛−4

− 1.

(14)

We summarize relevant results (some stated in [8]) in the
following theorem.

Theorem 4. Let 𝑛 ≥ 5, 𝑧 = 𝑟𝑒
𝑖𝜃 with 0 < 𝑟 < ∞, and let

𝑓
𝑛
(𝑟, 𝜃) be defined as in (14). One then has the following.

(1) For every 𝜃 ∈ R, (13) has exactly three positive zeroes,
𝑟
𝐷
, 1, and 𝑟

𝐸
, such that 𝑟

𝐷
< 1 < 𝑟

𝐸
= 1/𝑟

𝐷
. In

addition, 𝑟
𝐸
< (𝑛 − 1)

2/(𝑛−4), so the zeroes converge to 1
as 𝑛 → ∞.

(2) Each of the sets in (11) corresponds to a particular sign
of 𝑓
𝑛
:

𝑓
𝑛
(𝑟, 𝜃) = 0 ⇐⇒

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑝
(𝑧)

󵄨󵄨󵄨󵄨󵄨
=

1

|𝑧|
⇐⇒ 𝑧 ∈ 𝜕𝐷 ∪ 𝑆

1

∪ 𝜕𝐸,

𝑓
𝑛
(𝑟, 𝜃) < 0 ⇐⇒

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑝
(𝑧)

󵄨󵄨󵄨󵄨󵄨
>

1

|𝑧|
⇐⇒ 𝑧 ∈ 𝐷 ∪ 𝐾

1
,

𝑓
𝑛
(𝑟, 𝜃) > 0 ⇐⇒

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑝
(𝑧)

󵄨󵄨󵄨󵄨󵄨
<

1

|𝑧|
⇐⇒ 𝑧 ∈ 𝐾

0
∪ 𝐸.

(15)

(3) The boundaries 𝜕𝐷 and 𝜕𝐸 correspond to polar curves
of the form 𝑟 = 𝑟

𝐷
(𝜃) and 𝑟 = 𝑟

𝐸
(𝜃). The function

𝑟
𝐷
(𝜃) is maximized at any 𝜃 = 𝜃

0
and minimized at

any 𝜃 = 𝜃
1
, while the function 𝑟

𝐸
(𝜃) is minimized at

any 𝜃 = 𝜃
0
and maximized at any 𝜃 = 𝜃

1
. In addition,

both 𝑟
𝐷
(𝜃) and 𝑟

𝐸
(𝜃) are monotonic between any two

consecutive angles 𝜃
0
and 𝜃
1
(see Figure 1).

Proof. (1) Let 𝑛 ≥ 5, 𝜃 ∈ R, and define 𝑓 (𝑟) = 𝑓
𝑛
(𝑟, 𝜃). Note

that 𝑓 is a differentiable function and

𝑓 (0) = −1, 𝑓 (1) = 0, lim
𝑟→+∞

𝑓 (𝑟) = +∞,

𝑓
󸀠

(1) < 0.

(16)

It is easy to show that 𝑓󸀠 (1) ≤ −2𝑛
2. This implies that 𝑓 has

at least three positive zeroes. From (12) and Proposition 3 it
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follows that, other than 1, the zeroes of 𝑓 come in reciprocal
pairs, so the actual number of zeroes is an oddnumber greater
than or equal to 3. As in [7, 8], we will invoke Descartes’
rule of signs. When 𝑛 is even, 𝑓 is a polynomial, so the
rule can be applied directly. When 𝑛 is odd, we can apply it
to 𝑔 (𝑟) = 𝑓 (𝑟

2

), which is a polynomial that also satisfies
(16) with 𝑓 (𝑟) replaced by 𝑔 (𝑟). Hence, we focus on 𝑓 with
the understanding that 𝑔 is handled exactly the same way.
Note that 𝑓 can be expanded to contain at most 6 terms
with different powers of 𝑟; hence, there are at most 5 sign
changes, and 𝑓 has at most 5 positive zeroes. From (16) it
now follows that if 𝑓 had 5 zeroes, two of them would have
to have multiplicity greater than 1 and 𝑓

󸀠 would have to have
at least 6 positive zeroes (4 between the zeroes of 𝑓 and at
least 2 more from the multiple roots of 𝑓). This is, however,
impossible, since 𝑓

󸀠 is another polynomial with at most 5

terms of different powers of 𝑟; hence Descartes’ rule of signs
implies that 𝑓󸀠 has at most 4 positive zeroes. Consequently, 𝑓
has exactly 3 simple positive zeroes as stated in the theorem.

Finally, a straightforward computation with
(𝑛 − 1)

2/(𝑛−4)

> 1 shows that

𝑓 ((𝑛 − 1)
2/(𝑛−4)

) = (𝑛 − 1)
4

− 1 + 2𝑛 (𝑛 − 2)

× (𝑛 − 1)
(2𝑛−4)/(𝑛−4)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
cos(𝑛𝜃

2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
> 0,

(17)

so, since 𝑓 is negative for 1 < 𝑟 < 𝑟
𝐸
and positive for 𝑟 > 𝑟

𝐸
,

we have that (𝑛−1)
2/(𝑛−4)

> 𝑟
𝐸
. Application of L’Hôpital’s rule

shows that (𝑛 − 1)
2/(𝑛−4)

→ 1 as 𝑛 → ∞.
(2) This part follows from the definition of the relevant

sets in (11) and from replacing the equality in (12) by
inequalities, which results in inequalities in (13) [8].

(3) Since for every 𝜃 ∈ R there are unique values of 𝑟
𝐷

and 𝑟
𝐸
, we can think of 𝜕𝐷 and 𝜕𝐸 as polar curves. To prove

all of the remaining statements in this part, it is enough to
consider 𝑟

𝐸
(𝜃) for 0 ≤ 𝜃 ≤ 𝜋/𝑛, since the rest follows by

the symmetries discussed earlier. Note that the cosine term
in (14) is the largest for 𝜃 = 0, so on the circle 𝑟 = 𝑟

𝐸
(0) > 1,

as a function of 𝜃, 𝑓
𝑛
(𝑟
𝐸
(0), 𝜃) is the largest (and equal to

0) exactly when 𝜃 = 𝜃
0
. Thus, 𝑓

𝑛
is negative on the circle

for every 𝜃 ̸= 𝜃
0
, and it follows that 𝑟

𝐸
(𝜃) ≥ 𝑟

𝐸
(𝜃
0
) for

all 𝜃 ∈ R. Similarly, the cosine term is the smallest when
𝜃 = 𝜋/𝑛, and by a similar argument we get 𝑟

𝐸
(𝜃) ≤ 𝑟

𝐸
(𝜃
1
)

for all 𝜃 ∈ R. Finally, to prove the last assertion, we implicitly
differentiate (13) with respect to 𝜃 and observe that 𝑑𝑟

𝐸
/𝑑𝜃 =

−(𝜕𝑓
𝑛
/𝜕𝜃)/(𝜕𝑓

𝑛
/𝜕𝑟) vanishes only when 𝜃 = 𝜃

0
and does

not exist only when 𝜃 = 𝜃
1
, since the numerator contains a

factor sin (𝑛𝜃/2) and the denominator is positive on 𝑟
𝐸
(𝜃) as

the proof of part (1) implies. This concludes the proof of the
theorem.

Remark 5. As in [8], we define the values 0 < 𝑠
0
< 𝑟
0
< 1 by

𝑠
0
= 𝑟
𝐷
(𝜃
1
) = min
0≤𝜃<2𝜋

𝑟
𝐷
(𝜃) , 𝑟

0
= 𝑟
𝐷
(𝜃
0
) = max
0≤𝜃<2𝜋

𝑟
𝐷
(𝜃) .

(18)

The four circles with radii 𝑠
0
< 𝑟
0
< 1/𝑟

0
< 1/𝑠

0
are shown

in Figure 1 as dashed circles, and the annuli {𝑠
0
< 𝑟 < 𝑟

0
} and

{1/𝑟
0
< 𝑟 < 1/𝑠

0
} are shaded gray.

5. Dynamics of the Laguerre Iteration
Function

5.1. Dynamics on the Unit Circle. In this section, we study
the dynamics on the unit circle, 𝑆

1. As a consequence of
Theorem 4, part (1), we have that the unit circle, 𝑆

1, is
invariant under the Laguerre iteration function (see also [8]).
This follows from (13) and (12) with 𝑟 = 1. However, more can
be said about the behavior of 𝐿

𝑝
on 𝑆
1.

Proposition 6. Let 𝑛 ≥ 5. If 𝑧
0

∈ 𝑆
1

\ Θ
1
, then the

sequence of iterates of Laguerre’s method, {𝐿𝑘
𝑝
(𝑧
0
)}, converges

monotonically to the nearest root of 𝑝
𝑛
(𝑧) = 𝑧

𝑛

−1 in the sense
that |𝐿𝑘

𝑝
(𝑧
0
)| = 1 and the arguments of 𝐿𝑘

𝑝
(𝑧
0
) monotonically

approach the argument of the nearest root as 𝑘 → ∞. If
𝑧
0
∈ 𝑆
1

∩ Θ
1
, then the iterates converge monotonically to the

nearest root of 𝑝
𝑛
in the clockwise direction.

Proof. Due to the symmetry properties of 𝐿
𝑝
(Propositions

1 and 2), it is enough to assume 𝑧 = 𝑒
𝑖𝜃 with 0 < 𝜃 ≤ 𝜋/𝑛

and show that 𝐿
𝑝
(𝑧) = 𝑒

𝑖
̃
𝜃 with 0 < 𝜃 < 𝜃. Since the

sequence of arguments generated by the method will then be
a decreasing sequence bounded below by 0, it will converge,
and the corresponding sequence of points on 𝑆

1 will converge
to a fixed point of 𝐿

𝑝
, that is, to a root of 𝑝

𝑛
by the continuity

of 𝐿
𝑝
away from Θ

1
. The limiting root will have to be 1 and

both assertions of the proposition will follow.
To prove that 0 < 𝜃 < 𝜃, we first note that

𝐿
𝑝
(𝑧) = 𝑒

𝑖𝜃
𝑒
−𝑖(𝑛𝜃/2)

+ (𝑛 − 1)

𝑒𝑖(𝑛𝜃/2) + (𝑛 − 1)
, (19)

where the numerator and the denominator are conjugates of
each other and 𝑛𝜃/2 ≤ 𝜋/2. Thus the whole fraction results
in an expression of the form 𝑒

−2𝑖
̂
𝜃 with 0 < 𝜃 < 𝜋/2, where

𝜃 = arg (𝑒
𝑖(𝑛𝜃/2)

+ (𝑛 − 1))

= arctan(
sin (𝑛𝜃/2)

cos (𝑛𝜃/2) + (𝑛 − 1)
) .

(20)

Consequently, 𝐿
𝑝
(𝑧) = 𝑒

𝑖(𝜃−2
̂
𝜃) and it remains to show that

𝜃 − 2𝜃 > 0. Consider the function

𝑔 (𝜃) = 𝜃 − 2𝜃 = 𝜃 − 2 arctan(
sin (𝑛𝜃/2)

cos (𝑛𝜃/2) + (𝑛 − 1)
) ,

0 ≤ 𝜃 ≤
𝜋

𝑛
.

(21)

One can verify that 𝑔 (0) = 0 and since

𝑔
󸀠

(𝜃) =
2 (𝑛 − 1) (𝑛 − 2) sin2 (𝑛𝜃/4)

(cos (𝑛𝜃/2) + (𝑛 − 1))
2

+ sin2 (𝑛𝜃/2)
> 0, (22)

we conclude that 𝑔 (𝜃) > 0 for 0 < 𝜃 ≤ 𝜋/𝑛.
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5.2. Dynamics of the Two-Cycle {0,∞}. Aswementioned ear-
lier, the Laguerre iteration function (5) has a two-cycle {0,∞}

for 𝑛 ≥ 3. We now show that this two-cycle is attracting for
𝑛 ≥ 5 and its basin of attraction contains a significant portion
of𝐷∪𝐸. We will demonstrate later in Section 6 that the basin
of attraction can be quite complicated and appears to have a
fractal boundary. For the rest of Section 5 we assume 𝑛 ≥ 5.

The following proposition appears in [8]. It shows that
the innermost and the outermost white regions in Figure 1
belong to the basin of attraction of the two-cycle. We provide
our own proof for the second part of the proposition, as
the original proof in [8] appears to assume the continuity of
the Laguerre iteration function 𝐿

𝑝
throughout the complex

plane.

Proposition 7. Let 𝑠
0
be as defined in (18). Let 𝐷

𝑠0
= {𝑧 ∈

C \ {0} : |𝑧| < 𝑠
0
} and 𝐸

𝑠0
= {𝑧 ∈ C : |𝑧| > 1/𝑠

0
}. Then

𝐿
𝑝
(𝐷
𝑠0
) ⊂ 𝐸

𝑠0
and 𝐿

𝑝
(𝐸
𝑠0
) ⊂ 𝐷

𝑠0
. Moreover, 𝐷

𝑠0
∪ 𝐸
𝑠0
is

contained in the basin of attraction of the two-cycle {0,∞}.

Proof. The proof of the first part follows that of [8]. Note first
that Theorem 4 implies that 𝐷

𝑠0
⊂ 𝐷 and 𝐸

𝑠0
⊂ 𝐸. Hence, if

𝑧 ∈ 𝐷
𝑠0
, then |𝐿

𝑝
(𝑧)| > 1/|𝑧| > 1/𝑠

0
and 𝐿

𝑝
(𝑧) ∈ 𝐸

𝑠0
. Simi-

larly, if 𝑧 ∈ 𝐸
𝑠0
, then |𝐿

𝑝
(𝑧)| < 1/|𝑧| < 𝑠

0
and 𝐿

𝑝
(𝑧) ∈ 𝐷

𝑠0
.

To prove the second part, it is enough to show that the
basin of attraction of the two-cycle {0,∞} contains 𝐷

𝑠0
. It

follows from the previous part that if 𝑧 ∈ 𝐷
𝑠0
, then |𝐿

𝑝
(𝑧)| >

1/|𝑧| and |𝐿
2

𝑝
(𝑧)| < 1/|𝐿

𝑝
(𝑧)|, and, consequently, |𝐿2

𝑝
(𝑧)| <

|𝑧|. Similarly, if 𝑧 ∈ 𝐸
𝑠0
, we have |𝐿

2

𝑝
(𝑧)| > |𝑧|. We will show

that for 𝑧 ∈ 𝐷
𝑠0
the even terms of the sequence {𝐿

𝑘

𝑝
(𝑧)} con-

verge to 0 and the odd ones to∞. To this end, we observe that
{|𝐿
2𝑘

𝑝
(𝑧)|} is a decreasing, bounded, and therefore convergent

sequence. If its limit is 0, we are done, since |𝐿2𝑘
𝑝

(𝑧)| → 0 and
|𝐿
2𝑘+1

𝑝
(𝑧)| > 1/|𝐿

2𝑘

𝑝
(𝑧)| → ∞ as 𝑘 → ∞.

Assume now that lim
𝑘→∞

|𝐿
2𝑘

𝑝
(𝑧)| = 𝑏 > 0 and, using

the Bolzano-Weierstrass theorem, consider a convergent
subsequence of {𝐿

2𝑛𝑘

𝑝
(𝑧)} and its limit, say, 𝑧̃ ∈ 𝐷

𝑠0
. We

then have that if 𝑧̃ is not in Θ
1
, or if 𝑧̃ ∈ Θ

1
and {𝐿

2𝑛𝑘

𝑝
(𝑧)}

approaches it counter-clockwise, then, by the continuity of
𝐿
𝑝
and |𝐿

𝑝
|, we have 𝑏 = lim

𝑘→∞
|𝐿
2

𝑝
(𝐿
2𝑛𝑘

𝑝
(𝑧))| = |𝐿

2

𝑝
(𝑧̃)|

< |𝑧̃| = 𝑏, a contradiction. The only remaining possibility
is that 𝑧̃ ∈ Θ

1
and it is not possible to extract a subse-

quence approaching it counter-clockwise. In that case 𝑧̃ is
(eventually) approached clockwise, and we can consider
a sequence symmetric via a reflection through Θ

1
(Prop-

ositions 1 and 2). We then obtain a contradiction for this new
sequence as in the previous case.

Remark 8. The regions 𝐷
𝑠0
and 𝐸

𝑠0
defined in Proposition 7

can be seen in Figure 1: 𝐷
𝑠0
is the open ball not containing 0

bounded by the smaller gray annulus, while 𝐸
𝑠0
is the region

on the outside of the larger gray annulus.

Although the basin of attraction of the two-cycle {0,∞}

is significantly larger than 𝐷
𝑠0

∪ 𝐸
𝑠0
(see Section 6), we can

immediately extend it in the following sense.

Corollary 9. The sets {|𝑧| = 𝑠
0
} ∩ 𝐷 and {|𝑧| = 1/𝑠

0
} ∩ 𝐸 are

contained in the basin of attraction of the two-cycle {0,∞}.

Proof. From the definitions of 𝐷 and 𝐸 in (11) it is clear that
any point in {|𝑧| = 𝑠

0
} ∩ 𝐷 or {|𝑧| = 1/𝑠

0
} ∩ 𝐸 gets mapped

into𝐷
𝑠0

∪ 𝐸
𝑠0
, and the claim follows.

We believe that the points 𝑠
0
𝑒
𝑖𝜃1 and (1/𝑠

0
)𝑒
𝑖𝜃1 also

converge to the {0,∞} two-cycle. Since these points belong
to the set 𝜕𝐷 ∪ 𝜕𝐸, their images under the Laguerre iteration
map (5) lie on the circles with radii 1/𝑠

0
and 𝑠
0
, respectively,

so it suffices to show that their arguments are different from
𝜃
1
. We have not been able to find a simple proof for this

statement.

5.3. Dynamics of the Basins of Convergence. In Proposition 10
we state a result [8] that shows that the open annulus bounded
by the gray annuli in Figure 1 belongs to the basin of attraction
of the roots of𝑝

𝑛
(𝑧) = 𝑧

𝑛

−1. Again, it turns out that the basin
is actually larger than the annulus (see Section 6).We provide
an elementary proof of the final statement of Proposition 10,
since in the proof in [8] a reference is made to [6], which does
not appear relevant to the proof.

Proposition 10. Let 𝑟
0
be defined as in (18). Let 𝐾̂

0
= {𝑧 ∈ C :

𝑟
0
< |𝑧| < 1} ⊂ 𝐾

0
and 𝐾̂

1
= {𝑧 ∈ C : 1 < |𝑧| < 1/𝑟

0
} ⊂ 𝐾

1
.

Then 𝐿
𝑝
(𝐾̂
0
∪ 𝐾̂
1
∪ 𝑆
1

) ⊂ 𝐾̂
0
∪ 𝐾̂
1
∪ 𝑆
1, and the sequence

{𝐿
𝑘

𝑝
(𝑧)} with 𝑧 ∈ 𝐾̂

0
∪ 𝐾̂
1
∪ 𝑆
1 converges to a root of 𝑝

𝑛
(𝑧) =

𝑧
𝑛

− 1.

Proof. We provide a proof along the lines of [8]. First, if 𝑧 =

𝑟𝑒
𝑖𝜃

∈ 𝐾̂
0
⊂ 𝐾
0
, then |𝐿

𝑝
(𝑧)| < 1/𝑟 < 1/𝑟

0
from the definition

of 𝐾
0
. Using (6) and 𝑟 < 1, we obtain |𝐿

𝑝
(𝑧)| > 𝑟 > 𝑟

0
(see

[8] for details), so we can conclude that 𝐿
𝑝
(𝑧) ∈ 𝐾̂

0
∪ 𝐾̂
1
. In

exactly the same fashion, for 𝑧 = 𝑟𝑒
𝑖𝜃

∈ 𝐾̂
1
we obtain 𝑟

0
<

1/𝑟 < |𝐿
𝑝
(𝑧)| < 𝑟 < 1/𝑟

0
, and, again, 𝐿

𝑝
(𝑧) ∈ 𝐾̂

0
∪ 𝐾̂
1
. In

view of Proposition 6, we can conclude that 𝐿
𝑝
(𝑧) ∈ 𝐾̂

0
∪

𝐾̂
1
∪ 𝑆
1 for any 𝑧 ∈ 𝐾̂

0
∪ 𝐾̂
1
∪ 𝑆
1.

We know from Proposition 6 that if 𝑧 ∈ 𝑆
1, then

{𝐿
𝑘

𝑝
(𝑧)} converges to a root of 𝑝

𝑛
. It follows from the above

inequalities that for 𝑧 ∈ 𝐾̂
0
∪ 𝐾̂
1
we have

min{|𝑧| ,
1

|𝑧|
} <

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑝
(𝑧)

󵄨󵄨󵄨󵄨󵄨
< max{|𝑧| ,

1

|𝑧|
} ,

min{|𝑧| ,
1

|𝑧|
} <

1
󵄨󵄨󵄨󵄨󵄨
𝐿
𝑝
(𝑧)

󵄨󵄨󵄨󵄨󵄨

< max{|𝑧| ,
1

|𝑧|
} ,

(23)

and, consequently, the sequence {||𝐿
𝑘

𝑝
(𝑧)| − 1/|𝐿

𝑘

𝑝
(𝑧)||} is

decreasing and convergent.This sequence converges to 0 (and
lim
𝑘→∞

|𝐿
𝑘

𝑝
(𝑧)| = 1), since otherwise we can consider a

subsequence (not relabeled) such that |𝐿
𝑘

𝑝
(𝑧)| → 𝑏 ̸= 1,

extract a further subsequence such that 𝐿
𝑛𝑘

𝑝
(𝑧) → 𝑧̃, and

argue as in the proof of Proposition 7 that |𝐿
𝑝
(𝑧̃)| = |𝑧̃| = 𝑏,

contradicting the inequalities in (23).
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Figure 2: Numerically computed basins of attraction of Laguerre’s method applied to the polynomials 𝑝
𝑛
(𝑧) = 𝑧

𝑛

− 1 with 𝑛 = 5, 6, 7, and 8

(row-wise, left to right). Each color corresponds to a basin of attraction of a root in the basin. The two black curves in each image are 𝜕𝐷 and
𝜕𝐸, and the dots represent the roots of 𝑝

𝑛
. Note how the boundary of the basin of attraction tracks but does not coincide with 𝜕𝐷 ∪ 𝜕𝐸 and

appears fractal.

Finally, for 𝑧 ∈ 𝐾̂
0
∪ 𝐾̂
1
and the sequence {𝐿

𝑘

𝑝
(𝑧)},

consider a convergent subsequence {𝐿
𝑛𝑘

𝑝
(𝑧)} and its limit 𝑧̃ ∈

𝑆
1. If 𝑧̃ ∈ 𝑆

1

\ Θ
1
, then the sequence {𝐿

𝑗

𝑝
(𝑧̃)} converges to a

root 𝑧∗ of𝑝
𝑛
by Proposition 6. By the continuity of 𝐿

𝑝
and the

fact that {𝐿𝑗
𝑝
(𝑧̃)} converges to 𝑧

∗ monotonically in the sense
of Proposition 6, we have lim

𝑘→∞
𝐿
𝑛𝑘+𝑗

𝑝
(𝑧) → 𝐿

𝑗

𝑝
(𝑧̃) for any

𝑗 ≥ 0.This implies that there exist a large enough 𝑘 and a large
enough 𝑗 such that 𝐿𝑛𝑘+𝑗

𝑝
(𝑧) is in the basin of attraction of the

root 𝑧∗, and, therefore, thewhole sequence {𝐿𝑘
𝑝
(𝑧)} converges

to 𝑧
∗. In particular, 𝑧̃ = 𝑧

∗.

The remaining case with the limit of the subsequence
{𝐿
𝑛𝑘

𝑝
(𝑧)} satisfying 𝑧̃ ∈ 𝑆

1

∩ Θ
1
can be treated as in the

proof of Proposition 7 by considering further subsequences
approaching 𝑧̃ clockwise or counter-clockwise; in either cases
we obtain a contradiction, since arguing as in the previous
paragraph we conclude that 𝑧̃ has to be a root of 𝑝

𝑛
.

We again have an extension of the above proposition,
arguing as in the proof of Corollary 9.

Corollary 11. The sets {|𝑧| = 𝑟
0
} ∩ 𝐾
0
and {|𝑧| = 1/𝑟

0
} ∩ 𝐾
1

are contained in the basin of attraction of the roots of unity.
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Figure 3: Numerically computed basins of attraction of Laguerre’s method applied to the polynomials 𝑝
𝑛
with 𝑛 = 10, 12, 14, and 16 (row-

wise, left to right).

However, the remaining points on the circles {|𝑧| = 𝑟
0
}

and {|𝑧| = 1/𝑟
0
} form nontrivial, finite two-cycles [7, 8].

Proposition 12. For every 𝜃
0
∈ Θ
0
, the set {𝑟

0
𝑒
𝑖𝜃0 , (1/𝑟

0
)𝑒
𝑖𝜃0}

with 𝑟
0
defined in (18) is a two-cycle for the Laguerre iteration

function (5).

Proof. By Proposition 1, we can assume 𝜃
0

= 0. From (5)
we have that 𝐿

𝑝
maps real, positive numbers to real, positive

numbers, so 𝐿
𝑝
(𝑟
0
) = 1/𝑟

0
since 𝑟

0
∈ 𝜕𝐷. Similarly, 𝐿

𝑝
(1/

𝑟
0
) = 𝑟
0
since 1/𝑟

0
∈ 𝜕𝐸.

For completeness, we state the following result that
completes the dynamics on Θ

0
.

Proposition 13. For every 𝜃
0
∈ Θ
0
, the set {𝑟𝑒𝑖𝜃0 : 0 < 𝑟 <

𝑟
0
or 1/𝑟

0
< 𝑟} belongs to the basin of attraction of the two-cycle

{0,∞} for the Laguerre iteration function (5).

Proof. The proof is similar to the proof of the second part of
Proposition 7. For 0 < 𝑟 < 𝑟

0
, we get 0 < 𝐿

2

𝑝
(𝑟) < 𝑟, so

lim
𝑘→∞

𝐿
2𝑘

𝑝
(𝑟) = 𝑟 with 0 ≤ 𝑟 < 𝑟

0
. Now, if 𝑟 > 0, we would

have the contraction 𝐿
2

𝑝
(𝑟) < 𝑟 and we would also obtain
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Figure 4: Numerically computed basins of attraction of Laguerre’s method applied to the polynomials 𝑝
𝑛
with 𝑛 = 5, 8, 12, and 16 (row-wise,

left to right) shown on the same [−16, 16] × [−16, 16] square.

𝐿
2

𝑝
(𝑟) = 𝑟 by the continuity of 𝐿

𝑝
. Therefore, 𝑟 = 0, and

the rest follows by the symmetry properties of the Laguerre
iteration function.

Finally, the following result clearly demonstrates that
Laguerre’s method is not suitable for finding roots of unity
for large-degree polynomials [7].

Proposition 14. Let 𝑠
0
be as defined in (18). The set of all

points in C for which Laguerre’s method (1) converges to a
root of 𝑝

𝑛
(𝑧) = 𝑧

𝑛

− 1, 𝑛 ≥ 5, is contained in the annulus
{𝑧 ∈ C : 𝑠

0
≤ |𝑧| ≤ 1/𝑠

0
}, whose Lebesgue measure tends to 0

as 𝑛 → ∞.

Proof. The claim follows from Proposition 7 andTheorem 4,
part (1).

6. The Basins of Convergence and Their
Boundaries

In this section we present primarily computational results
that address the structure of the basins of attraction of
Laguerre’smethod (1) applied to𝑝

𝑛
(𝑧) = 𝑧

𝑛

−1with 𝑛 ≥ 5. All
numerical results have been generated using the free software
package GNU Octave [12, 13]. These results show that the
basins of attraction do not coincide with the sets defined in
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Figure 5: Parts of the basins of convergence to roots of 𝑝
𝑛
(𝑧) = 𝑧

𝑛

− 1 for 𝑛 = 8, 16, 24, and 32. They correspond to the sectors with
𝜋 (𝑛 − 1)/𝑛 < 𝜃 < 𝜋 (𝑛 + 1)/𝑛 and indicate that the boundaries of the basins of convergence are fractal.
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Figure 6: Three consecutive zoom levels into a part of the boundary for 𝑛 = 32 clearly demonstrate that the boundary of the basin of
convergence is not self-similar only quasi-self-similar.

(11), and they raise additional questions that we summarize in
the next section.

We mentioned earlier that for 𝑛 = 2 it takes one iteration
to get to a root of 𝑝

2
from any initial guess. It is also known

that for 𝑛 = 3 and 4 the method is globally convergent
to a root of 𝑝

𝑛
(except for when the initial guess 𝑧

0
= 0)

[7, 8, 11]. However, from the above analysis it follows that
for 𝑛 ≥ 5 this is no longer true; more specifically, the basin
of attraction for each 𝑛 ≥ 5 is contained in the annulus
{𝑠
0
≤ |𝑧| ≤ 1/𝑠

0
} with 𝑠

0
given in (18). Since 𝑠

0
is not easily

computable, we can use the upper bound 1/𝑠
0
< (𝑛− 1)

2/(𝑛−4)

(see Theorem 4). In Figures 2 and 3, we present examples of

the basins of attraction for 𝑛 = 5, . . . , 8 (Figure 2) and 𝑛 = 10,
12, 14, and 16 (Figure 3). These are plotted on the squares
[−(𝑛 − 1)

2/(𝑛−4)

, (𝑛 − 1)
2/(𝑛−4)

] × [−(𝑛 − 1)
2/(𝑛−4)

, (𝑛 − 1)
2/(𝑛−4)

]

and show that the upper bound is a good estimate of 1/𝑠
0
.

Also plotted are the curves 𝜕𝐷 and 𝜕𝐸 and we see that the
basins of attraction do not coincide with any of the sets of
significance defined in (11). Also note how, in accordancewith
Theorem 4, the basin of convergence shrinks as 𝑛 increases.
This is demonstrated in Figure 4, where the basins for 𝑛 = 5,
8, 12, and 16 are plotted on the same scale.

The boundary of the basin of convergence appears fractal
(see, e.g., [14] for more on fractals). We demonstrate this in
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Figure 7: Several consecutive zooms into two parts of the boundary for 𝑛 = 128. Note that the basin of convergence is not either connected or
simply connected. In particular, it appears that the basin of attraction of the roots consists of infinitelymany (quasi-) self-similar disconnected
sets (zooms on the left) and infinitely many (quasi-) self-similar “holes” corresponding to basins of attraction of the two-cycle {0,∞} (zooms
on the right).
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Figure 8: Several consecutive zooms into two parts of the boundary for 𝑛 = 1024. Much more structure and disconnectedness becomes
visible compared to the case with 𝑛 = 128 (Figure 7). Note how the basins of convergence to the two-cycle {0,∞} (in white) extend through
the “gray areas” 1/𝑟

0
< |𝑧| < 1/𝑠

0
and also note the (quasi-) self-similarity throughout.

Figure 5, where we show parts of the external boundary of
the basins of convergence in the sectors with 𝜋 (𝑛 − 1)/𝑛 <

𝜃 < 𝜋 (𝑛 + 1)/𝑛 for 𝑛 = 8, 16, 24, and 32. By the rotational
symmetry, Proposition 1, the other parts of the external
boundary are congruent to the displayed ones.

The boundaries displayed in Figure 5 appear self-similar,
but they are only quasi-self-similar (see, e.g., [14, 15] for more
on quasi-self-similarity). We demonstrate this observation in
Figure 6, where we can see slight changes of shape as we zoom
in and also as we more carefully examine the shapes within
each figure.

In addition, it came to us as quite a surprise; it seems that
the basins of convergence as shown in color in Figures 2 and
3 are not, in general, (disregarding the “hole” in the middle)
simply connected or even connected! In Figures 7 and 8 we
present results with 𝑛 = 128 and 𝑛 = 1024, respectively,
and several consecutive zooms into the “gray area” {1/𝑟

0
<

|𝑧| < 1/𝑠
0
} shown in Figure 1. Note the intricate structure

that becomes more prominent for larger values of 𝑛. Both
figures clearly demonstrate the disconnectedness of the basin
of attraction of the roots of𝑝

𝑛
.We chose the values of 𝑛 = 128

and 𝑛 = 1024 since the “holes” become detectable with a
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Table 1: Period four and period six cycles in the sectors 0 < 𝜃 < 𝜋/𝑛 for 𝑛 = 5, 6, 7, 8. All numbers computed to 16-significant-digit accuracy.

𝑛 Four cycles in 0 < 𝜃 < 𝜋/𝑛 Six cycles in 0 < 𝜃 < 𝜋/𝑛

5 14.76136221056119 + 6.053684491748273𝑖

13.34758676939078 + 8.758987500188936𝑖

6

4.749579144551457 + 1.098207699050568𝑖 4.809680273550060 + 0.2938473062700105𝑖

4.462144769610253 + 2.042313839245265𝑖 4.807845850061632 + 0.5532613795970850𝑖

4.791479366250020 + 0.7926029359282372𝑖

4.758607318036074 + 1.041475486533466𝑖

4.703162128954519 + 1.307935002359033𝑖

4.660756967199228 + 1.487046196784297𝑖

4.587335089636846 + 1.730901724312133𝑖

4.504230549742958 + 1.940512624824430𝑖

4.394056696857116 + 2.184780604963821𝑖

4.271115104571219 + 2.408180892551038𝑖

7

3.102711305833646 + 0.4791536373837452𝑖 3.086956249849817 + 0.09918082640500742𝑖

3.005076854712194 + 1.041210971892816𝑖 3.098674298771984 + 0.2141440467880112𝑖

3.108949745463634 + 0.2853986438548191𝑖

3.105161257066959 + 0.3575768153296901𝑖

3.103107584356313 + 0.4651267058741789𝑖

3.096111405599539 + 0.5516620616566748𝑖

3.104755891427699 + 0.6231011218949135𝑖

3.069516544423272 + 0.7787753426450393𝑖

3.013630591486307 + 1.011069152189774𝑖

2.988317222029729 + 1.090657585339925𝑖

2.947434684423189 + 1.193708033582317𝑖

2.917334700654045 + 1.353477443986847𝑖

8

2.452675491472578 + 0.2785857657502200𝑖 2.424861149787357 + 0.04867681760903371𝑖

2.475125064051807 + 0.4260510136323984𝑖 2.433534405337240 + 0.07300790020468901𝑖

2.419209618854812 + 0.6711649955368295𝑖 2.436567623533557 + 0.1147077080457789𝑖

2.403834152721369 + 0.9295918014456642𝑖 2.443481963307878 + 0.1425019298788600𝑖

2.453807739243897 + 0.1734183047708730𝑖

2.448811352673064 + 0.2130028821893788𝑖

2.452347914830289 + 0.2731330464450077𝑖

2.452422308102194 + 0.3140142922891776𝑖

2.460907150206826 + 0.3413782443508301𝑖

2.475788631367756 + 0.3743161467144843𝑖

2.478533197214976 + 0.3940810991477981𝑖

2.474834833464490 + 0.4192210929378601𝑖

2.452717379844995 + 0.4708078573787699𝑖

2.445815983913505 + 0.5121550600972321𝑖

2.446892544221102 + 0.5361638213148769𝑖

2.421772891898377 + 0.6579277753771876𝑖

2.413249889360346 + 0.6953853836452080𝑖

2.395254878356101 + 0.7555517867904204𝑖

2.393829791477975 + 0.8012023541812359𝑖

2.395554660155073 + 0.8271069757313417𝑖

2.405037612365332 + 0.9182940336703574𝑖

2.396106513659878 + 0.9454683171801179𝑖

2.394665948621691 + 0.9684820140915532𝑖
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Figure 9: Three levels of zoom into the computed basin of attraction for 𝑝
7
(𝑧) = 𝑧

7

− 1 using the general formulation of the method (2). (b)
corresponds to Figure 2(c), (a) is a zoom into the center part of (b), and (c) is a zoom out to a 40 × 40 square.

naked eye around 𝑛 = 120 and we could zoom into them, and
the larger value to demonstrate howmuchmore the structure
develops as 𝑛 increases.

7. Conclusions and Outstanding Questions

In the previous sections we have analyzed the behavior of
Laguerre’s method applied to the polynomials 𝑝

𝑛
(𝑧) = 𝑧

𝑛

− 1

in the extended complex plane and provided computational
results demonstrating the interesting behavior of themethod.
We now have an almost complete understanding of the
behavior of the method outside of the two gray areas that
contain the boundary of the basin of convergence. We

concluded that for initial guesses in 𝐾̂
0
∪ 𝐾̂
1
∪ 𝑆
1 the method

converges to a root of 𝑝
𝑛
(Proposition 10), and for initial

guesses in 𝐷
𝑠0

∪ 𝐸
𝑠0
the method converges to the two-cycle

{0,∞} (Proposition 7).
The numerical results indicate that the basin of attraction

of the roots and the basin of attraction of the two-cycle share
a common boundary, which should then be an invariant set
under the Laguerre iteration function (5) and consist only
of finite cycles and infinite orbits. We have not pursued this
direction in great depth, as it would likely require extending
the theory of Julia and Fatou sets [16] to functions that
are not rational. Note that the Laguerre iteration function
(5) is not rational even if 𝑛 is even due to the choice of
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sign in the denominator of the method. We have, however,
attempted to find some short cycles, other than those given
in Proposition 12, numerically in the following way. First,
we used the computational software program Mathematica
to generate the contour plots of Re (𝐿𝑘

𝑝
(𝑧) − 𝑧) = 0 and

Im (𝐿
𝑘

𝑝
(𝑧) − 𝑧) = 0 in the sector 0 < 𝜃 < 𝜋/𝑛 (recall

the symmetries in Propositions 1–3), and used the visually
discovered points of intersection as initial guesses for the
command FindRoot in Mathematica applied to 𝐿

𝑘

𝑝
(𝑧) − 𝑧.

This way we have been able to find some 2-, 4-, and 6-cycles
for polynomials of low degrees. In particular, it appears that
2-cycles in the sector 0 < 𝜃 < 𝜋/𝑛 only exist for 𝑛 ≥ 10

with 𝑝
10
–𝑝
16

having one such 2-cycle each; 𝑝
17
–𝑝
26

having
two; 𝑝

27
–𝑝
38

having three, and so forth. Regarding 4-cycles,
we found two for 𝑛 = 5, 6, 7; four for 𝑛 = 8; eight for
𝑛 = 9; nine for 𝑛 = 10; ten for 𝑛 = 11 and 12, and so
forth. Finally, 6-cycles appear to start at 𝑛 = 6; we found ten
of them for 𝑛 = 6, twelve for 𝑛 = 7, and twenty-three for
𝑛 = 8. Not surprisingly, we have not found any short odd-
cycles, which seems reasonable due to the expected behavior
of points near 𝜕𝐷 getting mapped close to 𝜕𝐸 and vice versa.
We list the found 4- and 6-cycles for 𝑛 = 5, 6, 7, 8 in Table 1,
where all numbers have been computed to 16 significant
digits accuracy.

Many questions remain. What is the shape of the bound-
ary of the basin of convergence? We see in Figures 2 and
3 that the boundary appears to track 𝜕𝐷 and 𝜕𝐸, but it
does not coincide with these sets. The boundary is fractal
(Figures 5 and 6) and, moreover, has many other components
in the annuli determined by 𝑟

0
and 𝑠
0
(Figures 7 and 8). It

may be of interest to see whether a fractal dimension of the
boundary has a simple dependence on 𝑛. We speculate that
the dimension might grow from 1 to 2 as 𝑛 increases from 5

to ∞, but we have not pursued this idea further.
It would also be interesting to see if other families of

polynomials exhibit similar features to those observed for
𝑝
𝑛
(𝑧) = 𝑧

𝑛

− 1. In particular, what determines the size and
shape of the basins of convergence to the roots? Is it due to
the symmetry of the roots that the measure of the basins
of convergence tends to zero? If so, would other symmetric
arrangements of the roots yield similar results? Perhaps the
questions should be reversed. Are there families of polyno-
mials for which Laguerre’s method converges to a root except
if starting from a set of zeromeasure? If so, what are they?We
intend to look into some of these questions in future work.

We conclude with the following interesting observation.
The fact that the method theoretically converges only in
the small annulus in the neighborhood of the unit circle
𝑆
1 suggests that Laguerre’s method is unsuitable practically
and raises a valid concern for general polynomials. On the
other hand, when the method is implemented in its general
formulation (2) and applied to polynomials 𝑝

𝑛
(𝑧) = 𝑧

𝑛

− 1,
the resulting image of the basins of attraction may look like
Figure 9, in which the basin of attraction of the roots of
𝑝
7
is shown as computed on a 1000 × 1000 grid of points.

Note that visually the method appears to converge from any
point in the displayed squares, which is not the case when
the mathematically equivalent formulation (5) is used. We

allow the iterations to run to convergence (or a prescribed
maximum number of iterations, 100 in this computation)
and observe convergence to apparently random roots even
for initial guesses in the set of theoretical convergence to the
two-cycle {0,∞} (compare to Figure 2(c), where the basin
of attraction of {0,∞} is colored white). The reason for this
peculiar behavior is the loss of significance in the computa-
tion of the expression (𝑛−1)

2

(𝑝
󸀠

(𝑧))
2

−𝑛 (𝑛−1)𝑝 (𝑧)𝑝
󸀠󸀠

(𝑧) in
the denominator of (2). Note that both terms in the difference
have leading terms 𝑛2 (𝑛 − 1)

2

𝑧
2𝑛−2, and the actual difference

should be equal to 𝑛
2

(𝑛 − 1)
2

𝑧
𝑛−2. We therefore see that,

for large |𝑧|, significant errors will occur in the computation
of the square root in (2). In fact, the relative error in the
computation of the square root is roughly proportional to
√𝜀(1 + |𝑧|𝑛), where 𝜀 is the machine epsilon, so, for example,
with 𝑛 = 8 and the usual 64-bit double precision, the relative
error is on the order of 1 with |𝑧| as small as 100. Such errors
then lead to the subsequent iterates attaining values from
which convergence occurs. We also note that such loss of
significance will occur for any polynomial 𝑝(𝑧) of degree 𝑛

and |𝑧| large enough, since for a general polynomial of degree
𝑛 the difference (𝑛 − 1)

2

(𝑝
󸀠

(𝑧))
2

− 𝑛 (𝑛 − 1)𝑝 (𝑧)𝑝
󸀠󸀠

(𝑧) will
have a leading term of order 𝑧

2𝑛−4, two orders of magnitude
smaller than the leading terms of (𝑛 − 1)

2

(𝑝
󸀠

(𝑧))
2 and 𝑛 (𝑛 −

1)𝑝 (𝑧)𝑝
󸀠󸀠

(𝑧). Perhaps this observation helps explain the
popular notion that Laguerre’s method seems to converge to
a root from almost any initial guess.
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