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THE Γ-CONVERGENCE OF A SHARP INTERFACE THIN FILM MODEL WITH
NON-CONVEX ELASTIC ENERGY

PAVEL BĚLÍK AND MITCHELL LUSKIN

Abstract. We give results for the Γ-limit of a scaled elastic energy of a film as the thickness h > 0 converges
to zero. The elastic energy density models materials with multiple phases or variants and is thus non-convex.

The model includes an interfacial energy that allows sharp interfaces between the phases and variants and

is proportional to the total variation of the deformation gradient.

1. Introduction

Thin films of martensitic crystals are the subject of increasing scientific and technological interest [6,16,22].
Dimensionally reduced models that replace the three-dimensional bulk energy with a two-dimensional thin
film energy can make the design of applications more tractable and the computation of the deformation
more efficient. New challenges arise in the derivation of thin film energies for martensitic crystals since the
presence of multiple phases and variants requires that the elastic energy density be non-convex [4,25,29] and
since an interfacial energy that allows sharp interfaces is often useful for accurate modeling [10–12]. Related
work on the general problem of rigorously deriving dimensionally reduced energy functionals has been given
in [1, 3, 6, 17,19,27,30].

We present results for the Γ-limit [7, 26] of the scaled elastic energy of a thin film with deformation
ũ : Ωh → R3 defined on a reference domain of thickness h > 0 given by Ωh = S × (−h/2, h/2) for S ⊂ R2

and subject to boundary conditions

ũ(x1, x2, x3) = y0(x1, x2) + b0(x1, x2)x3 for (x1, x2, x3) ∈ γ × (−h/2, h/2) (1.1)

so the film adheres on a part of its lateral boundary, γ×(−h/2, h/2) ⊂ ∂S×(−h/2, h/2). The elastic energy
of the film is given by

Eh(ũ) = κ

∫
Ωh

|D(∇ũ)|+
∫

Ωh

φ(∇ũ(x), x) dx, (1.2)

where the term κ
∫
Ωh
|D(∇ũ)| for κ > 0 models the interfacial energy between phases and variants (the total

variation of the deformation gradient is precisely defined in Section 2), and the term
∫
Ωh
φ(∇ũ(x), x) dx

models the elastic energy of the film. Since we are interested in modeling and computing the deformation of
thin films that undergo structural phase transformation, the energy density, φ(F, x), is generally a non-convex
function of the deformation gradient, F ∈ R3×3. The explicit dependence of the energy density, φ(F, x), on
x ∈ Ωh allows the modeling of alloys with compositional fluctuation [11–13,16,21].

We rescale the deformations ũ : Ωh → R3 to deformations on a fixed domain of thickness one, u : Ω1 → R3

by
u(z1, z2, z3) = ũ(z1, z2, hz3) for z = (z1, z2, z3) ∈ Ω1,

and we determine and analyze the Γ-limit of the rescaled energy

E(h)
1 (u) =

1
h
Eh(ũ)
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subject to rescaled boundary conditions

u(z1, z2, z3) = y0(z1, z2) + b0(z1, z2)hz3 for (z1, z2, z3) ∈ γ × (−1/2, 1/2). (1.3)

We analyze the Γ-limit of E(h)
1 (u) with respect to two related definitions of convergence for deformations.

For the first definition, we prove that the Γ-limit of E(h)
1 (u) is given by

E(0)(y, b) = κ

[∫
S

|D(∇y|
√

2 b)|+
√

2
∫

γ

|b− b0|
]

+
∫

S

φ(∇y(ẑ)|b(ẑ), ẑ, 0) dẑ (1.4)

for y : S → R3 such that y = y0 on γ ⊂ ∂S and b : S → R3. The matrix-valued function (∇y|b) : S → R3×3

in the thin film limit (1.4) models the thin film deformation gradient. We also identify (ẑ, 0) ∈ R3 with
ẑ ∈ S. For the second definition, we prove that the Γ-limit of E(h)

1 (u) is given by

E(0)
1 (u) =

{
min

b
E(0)(uM , b) if u,3 = 0 a.e. in Ω1,

+∞ otherwise,

where uM is the deformation of the midplane, uM (z1, z2) = u(z1, z2, 0). For both definitions of convergence of
deformations, we give compactness results and show that the uniform coerciveness of the energy functionals
E(h)
1 (u) allows us to prove that subsequences of energy-minimizing deformations of E(h)

1 (u) converge to
minimizers of the Γ-limit as h→ 0.

We have used the thin film energy (1.4) to compute the quasi-static evolution of a martensitic thin
film subject to a varying temperature field [8, 9]. In these computations, we use continuation methods for
which the film need only be in a local minimum. We think that the results in this paper, especially the
Γ-convergence described in Theorem 5.1, justify the use of the thin film energy (1.4) in this context because
the result (5.10) guarantees that any admissible (y, b) defined on S can be used to construct an admissible
ũh defined on Ωh that is a “smoothed” version of the deformation

y(x1, x2) + b(x1, x2)x3 for (x1, x2, x3) ∈ Ωh,

such that E(0)(y, b) is approximated by 1
hEh(ũh).

The energy density, φ(F, x), in models for crystals which undergo a structural phase transformation is
not quasi-convex [4, 5, 23–25, 28, 29]. The Γ-limit with respect to weak W 1,p convergence of a scaled elastic
energy that does not include interfacial energy will generally thus involve the quasi-convexification of the
elastic energy density [7,17]. However, the interfacial energy κ

∫
Ωh
|D(∇ũ)| in our model allows us to obtain

sequences of deformations with gradients that converge strongly and to use the strong continuity of the
scaled elastic energy h−1

∫
Ωh
φ(∇ũ(x), x) dx. A related result has been obtained in [6] for a diffuse interfacial

energy κ
∫
Ωh
|∇2ũ|2 dx.

We have recently computed the hysteresis of a martensitic thin film by the application of a thermal and
loading cycle [13] using the Γ-limit of the energy

Êh(ũ) = κ

∫
Ωh

|D(∇ũ)|+
∫

Ωh

φ(∇ũ(x), x) dx−
∫

∂Ωh

(Tn) · ũ

= κ

∫
Ωh

|D(∇ũ)|+
∫

Ωh

φ(∇ũ(x), x) dx−
∫

Ωh

T · ∇ũ,
(1.5)

where the dead load is Tn for a constant T ∈ R3×3 at points on the boundary ∂Ωh with unit exterior normal
vector n. The Γ-limit is shown in this paper to be

Ê(0)
1 (u) =

{
min

b
Ê(0)(uM , b) if u,3 = 0 a.e. in Ω1,

+∞ otherwise,

with
Ê(0)(y, b) = κ

∫
S

|D(∇y|
√

2 b)|+
∫

S

φ(∇y(ẑ)|b(ẑ), ẑ, 0) dẑ −
∫

S

T · (∇y|b).

In Section 2, we recall the total variation of functions of bounded variation and give a few needed prop-
erties. In Section 3, we describe the assumed properties of the elastic energy density, and in Section 4 we
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recall the definition of Γ-convergence. The main results and analysis for the Γ-limit of the film model with
Dirichlet boundary conditions are given in Section 5, and the main results and analysis for the Γ-limit of the
film model with loading boundary conditions are given in Section 6.

Our results in this paper extend the analysis given in [10] by proving the Γ-convergence of the scaled energy
functional for the adhering boundary condition (1.1). We also extend the class of energy densities, φ(F, x),
to allow compositional variation, and we extend the class of boundary conditions that can be analyzed by
giving results for the Γ-limit of the scaled energy functional with dead loads (1.5).

2. Functions of Bounded Variation

We will assume that S ⊂ R2 is a bounded domain with a Lipschitz continuous boundary, ∂S, and denote
the reference undistorted configuration of the thin film of the martensitic material by Ωh, 0 < h ≤ 1, where

Ωh = S × (−h/2, h/2).

The deformations of the thin film are given by functions ũ : Ωh → R3 with gradient ∇ũ : Ωh → R3×3. We
use the notation ũi,j = ∂ũi/∂xj , and we denote the columns of ∇ũ by ũ,i, i = 1, 2, 3. The “planar” gradient
of ũ, denoted by ∇P ũ : Ωh → R3×2, has columns given by ũ,1 and ũ,2.

Given an open set Ω ⊂ R3 and a function v ∈ L1(Ω; R), we define the total variation of v [18, 20] by∫
Ω

|Dv| = sup


∫

Ω

∑
k=1,2,3

v(x)ψk,k(x) dx : ψ ∈ C∞0 (Ω; R3), |ψ(x)| ≤ 1 for all x ∈ Ω


and say v ∈ BV (Ω) if

∫
Ω
|Dv| < +∞. We recall that C∞0 (Ω; R3) denotes the space of infinitely differentiable

functions compactly supported in Ω, whose range is R3, and we note that |ψ(x)| denotes the usual euclidian
norm, that is, the square root of the sum of the squares of all the components of ψ(x).

For a matrix-valued function v ∈ L1(Ω; Rm×p), we define∫
Ω

|Dv| = sup

{ ∑
i=1,...,m
j=1,...,p
k=1,2,3

∫
Ω

vij(x)ψijk,k(x) dx : ψ ∈ C∞0 (Ω; Rm×p×3), |ψ(x)| ≤ 1 for all x ∈ Ω

}
(2.1)

and say v ∈ BV (Ω) if
∫
Ω
|Dv| < +∞. We again assume that |ψ(x)| denotes the square root of the sum of

the squares of all the components of ψ(x), which is often called the Frobenius norm. Finally, we define the
“planar” variation∫

Ω

|DP v| = sup

{ ∑
i=1,...,m
j=1,...,p
k=1,2

∫
Ω

vij(x)ψijk,k(x) dx : ψ ∈ C∞0 (Ω; Rm×p×2), |ψ(x)| ≤ 1 for all x ∈ Ω

}
.

For a matrix-valued function v ∈ L1(S; Rm×p) we similarly define∫
S

|Dv| = sup

{ ∑
i=1,...,m
j=1,...,p
k=1,2

∫
S

vij(x)ψijk,k(x) dx : ψ ∈ C∞0 (S; Rm×p×2), |ψ(x)| ≤ 1 for all x ∈ S

}
.

We remark that if v ∈ BV (Ω1) is independent of z3, then, abusing the notation slightly, we have∫
Ω1

|Dv| =
∫

Ω1

|DP v| =
∫

S

|Dv|.

The notation BVq(Ω) will denote the space BV (Ω) ∩ Lq(Ω).
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For A ∈ Rm×p and B ∈ Rm×q, we denote by (A|B) ∈ Rm×(p+q) the matrix whose first p columns are
those of A and whose last q columns are those of B. For v ∈ L1(Ω1; Rm×p) and b ∈ L1(Ω1; Rm), we will use
the identity ∫

Ω1

|D(v|
√

2b)| =
∫

Ω1

|D(v|b|b)|. (2.2)

We will use the following extension of the classical result on the lower semicontinuity of the BV semi-
norm [18,20] to functions with fixed trace [10].

Theorem 2.1. If wj , bj ∈ BV (Ω1) for j ∈ N and w, b ∈ BV (Ω1) satisfy

lim
j→∞

‖wj − w‖L1(Ω1) = 0 and lim
j→∞

‖bj − b‖L1(Ω1) = 0,

and bj = b0 on Γ1 = γ × (− 1
2 ,

1
2 ) for fixed b0 ∈ BV (Ω1), then∫

Ω1

|DP (w|
√

2 b)|+
√

2
∫

Γ1

|b− b0| ≤ lim inf
j→∞

∫
Ω1

|DP (wj |
√

2 bj)|.

We will also use the following extension of the classical result on the approximation by smooth functions
in the BV seminorm [18,20] to functions with fixed trace [10].

Theorem 2.2. Let 1 ≤ q < +∞, let b0 ∈ W 1,q(S) be such that ∇b0 ∈ BV (S), let b ∈ BVq(S), and let
w ∈ BV (S). Then there exists a family {bε : ε > 0} ⊂ W 1,q(S) with ∇bε ∈ BV (S) such that bε = b0 on γ
for every ε > 0, and

lim
ε→0

‖bε − b‖Lq(S) = 0,

lim
ε→0

∫
S

|D(w|
√

2 bε)| =
∫

S

|D(w|
√

2 b)|+
√

2
∫

γ

|b− b0|.

3. The Elastic Energy Density φ

We will assume that the energy density φ : R3×3 × Ω1 → R satisfies the Carathéodory condition [15,26]
(1) φ(F, ẑ, z3) is continuous in (F, z3) ∈ R3×3 × (−1/2, 1/2) for almost every ẑ ∈ S,
(2) φ(F, ẑ, z3) is measurable in ẑ ∈ S for every (F, z3) ∈ R3×3 × (−1/2, 1/2),

and satisfies the growth condition

c1|F |p − c2 ≤ φ(F, z) ≤ c3(|F |p + 1) for all F ∈ R3×3 and z ∈ Ω1, (3.1)

where c1, c2, and c3 are fixed positive constants and 3 < p < +∞.
We can obtain this energy density φ from a free energy density φ̂(F, θ, c), where θ(z) is a given temperature

and c(z) is a given order parameter such as alloy composition, by φ(F, z) = φ̂(F, θ(z), c(z)). In what follows,
we will usually not denote the explicit dependence of φ on z. Notice that φ is bounded below and its absolute
value satisfies the growth property

|φ(F, z)| ≤ c3|F |p + max{c2, c3} for all F ∈ R3×3 and z ∈ Ω1.

4. The Γ-limit

We now give a definition of Γ-convergence [3, 7, 26] that allows the domain Ã of the approximating
functionals Fh to be different than the domain A of the Γ-limit F .

Definition 4.1. Let A and Ã be spaces such that the convergence of elements of Ã to an element of
A is defined. We say that the family of functionals {Fh : Ã → R ∪ {+∞} for h > 0} Γ-converges to
F : A → R ∪ {+∞} as h→ 0 if the following two conditions are satisfied:

Lower Bound: given any u ∈ A and any family {uh ∈ Ã : h > 0} such that uh → u as h → 0, we
have

F(u) ≤ lim inf
h→0

Fh(uh);
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Upper Bound: given any u ∈ A, there exists a family {uh ∈ Ã : h > 0} such that uh → u as h→ 0
and

F(u) ≥ lim sup
h→0

Fh(uh),

or equivalently, in view of the lower bound above,

F(u) = lim
h→0

Fh(uh).

We note that the first condition above (Lower Bound) guarantees that F is below the Γ-limit (if it exists),
and the second condition (Upper Bound) guarantees that F is above the Γ-limit (if it exists). If F satisfies
both conditions, then F is the Γ-limit.

5. Γ-limit of the film model with Dirichlet boundary conditions

In this section, we assume that the film adheres to a rigid material on its lateral surface

Γh = γ × (−h/2, h/2),

where we assume that γ 6= ∅ is a finite union of connected C1,1 open subsets of ∂S. Let y0, b0 ∈W 1,p(S; R3)
be such that ∇y0,∇b0 ∈ BV (S) and define the boundary condition

ũ0(x1, x2, x3) = y0(x1, x2) + b0(x1, x2)x3 for (x1, x2, x3) ∈ Ωh. (5.1)

We then define the space Ah of admissible deformations of the domain Ωh by

Ah =
{
ũ ∈W 1,p(Ωh; R3) : ∇ũ ∈ BV (Ωh), ũ = ũ0 on Γh

}
.

We note that due to the growth condition (3.1), we have that

Ah =
{
ũ : Ωh → R3 : Eh(ũ) < +∞, ũ = ũ0 on Γh

}
.

Also, since p > 3, it follows from the Sobolev embedding theorem [2] that Ah ⊂ C(Ω̄h). This ensures that
there is no tear in the deformed configurations ũ(Ωh) for ũ ∈ Ah.

We are interested in studying the thin film limit of the energies

Eh(ũ) = κ

∫
Ωh

|D(∇ũ)|+
∫

Ωh

φ(∇ũ(x), x) dx, ũ ∈ Ah, (5.2)

where the constant κ > 0 is a measure of interfacial energy per unit area. We rescale the deformations
ũ : Ωh → R3 to deformations on a fixed domain of thickness one, u : Ω1 → R3, via

u(z1, z2, z3) = ũ(z1, z2, hz3) for z = (z1, z2, z3) ∈ Ω1, (5.3)

and we then study the Γ-convergence as h→ 0 of the rescaled energy

E(h)
1 (u) =

1
h
Eh(ũ) (5.4)

for u defined in the space of admissible deformations

A1 =
{
u ∈W 1,p(Ω1; R3) : ∇u ∈ BV (Ω1), u = u0 on Γ1

}
,

where u0 is defined by (5.1) and (5.3) to be

u0(z1, z2, z3) = y0(z1, z2) + b0(z1, z2)hz3 for (z1, z2, z3) ∈ Ω1.

We will first define a topology for the convergence of uh ∈ A1 to (y, b) ∈ A0 where

A0 = {(y, b) ∈W 1,p(S; R3)× Lp(S; R3) : ∇y, b ∈ BV (S), y = y0 on γ}, (5.5)

and we will then show that the Γ-limit of E(h)
1 is given by E(0) where

E(0)(y, b) = κ

[∫
S

|D(∇y|
√

2 b)|+
√

2
∫

γ

|b− b0|
]

+
∫

S

φ(∇y(ẑ)|b(ẑ), ẑ, 0) dẑ. (5.6)
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We here use Definition 4.1 with A = A1 and Ã = A0. We note that above and in what follows we will often
use the notation ∫

S

φ(∇y|b) =
∫

S

φ(∇y(ẑ)|b(ẑ), ẑ, 0) dẑ.

In a second approach, we will set A = Ã = A1 with the topology on the space A1 given by weak W 1,p

convergence, and we will prove that a related functional E(0)
1 is the Γ-limit of E(h)

1 as h → 0. The relation
between E(0) and E(0)

1 will become clear.
We now consider the Γ-convergence of E(h)

1 to E(0) as h → 0. We start by introducing a notion of the
convergence of 3-D deformations {uh} ⊂ A1 to a 2-D deformation (y, b) ∈ A0 as h→ 0.

Definition 5.1. We shall say that a family {uh ∈ A1 : h > 0} converges to (y, b) ∈ A0 if the following
conditions are satisfied for ŷ(z1, z2, z3) = y(z1, z2) and b̂(z1, z2, z3) = b(z1, z2):

uh ⇀ ŷ in W 1,p(Ω1; R3) and h−1uh,3 ⇀ b̂ in Lp(Ω1; R3)

uh → ŷ in W 1,1(Ω1; R3) and h−1uh,3 → b̂ in L1(Ω1; R3)

}
as h→ 0.

We shall use this definition of convergence when proving the Γ-convergence of the functionals E(h)
1 to E(0)

since it allows the compactness property of Lemma 5.1 for sequences of deformations

{uhn
∈ A1 : n = 1, . . . and hn → 0 as n→∞}

with uniformly bounded energy E(hn)
1 (uhn) ≤ C for all n ≥ 1. This compactness property can then be used

with the Γ-convergence of the functionals E(h)
1 to E(0) to give a proof of the convergence of minimizers of

E(h)
1 to minimizers of the Γ-limit E(0) (see Corollary 5.1 following the proof of Theorem 5.1). We will see

from the proof of Theorem 5.1 that E(0) is also the Γ-limit of E(h)
1 if we use the strong convergence

uh → ŷ in W 1,p(Ω1; R3) and h−1uh,3 → b̂ in Lp(Ω1; R3)

in Definition 5.1, but we do not have a compactness property for this topology since BV (Ω1) is not compactly
embedded in Lp(Ω1) if p ≥ 3

2 [20].

Lemma 5.1. Suppose that {uhn ∈ A1 : n = 1, . . . and hn → 0 as n → ∞} is a sequence of deformations
with uniformly bounded energy E(hn)

1 (uhn
) ≤ C for all n ≥ 1. Then there exists a further subsequence, also

denoted by {uhn
∈ A1 : n = 1, . . . }, and (y, b) ∈ A0 such that {uhn

∈ A1 : n = 1, . . . } converges to (y, b) ∈ A0

in the sense of Definition 5.1. We may take a further subsequence such that the convergence is also almost
everywhere in Ω1.

Proof. We have from the definition of the total variation for matrix valued functions (2.1) that

1
hn

∫
Ωhn

|D(∇ũhn
)|

= sup

{ ∑
i=1,2,3
j,k=1,2

∫
Ω1

(uhn)i,jψijk,k +
∑

i=1,2,3
j=1,2

∫
Ω1

hn
−1(uhn)i,jψij3,3 +

∑
i=1,2,3
k=1,2

∫
Ω1

hn
−1(uhn)i,3ψi3k,k

+
∑

i=1,2,3

∫
Ω1

hn
−2(uhn

)i,3ψi33,3 : ψ ∈ C∞0 (Ω1), |ψ(z)| ≤ 1 for all z ∈ Ω1

}
.

(5.7)

Since E(hn)
1 (uhn

) ≤ C for all n ≥ 1, we have by the growth condition (3.1) that

‖uhn‖W 1,p(Ω1;R3) ≤ C, ‖h−1
n uhn,3‖Lp(Ω1;R3) ≤ C, (5.8)
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and we have by (5.7) that∫
Ω1

|D(∇uhn)| ≤ C,

∫
Ω1

|D(h−1
n uhn,3)| ≤ C,

sup

{ ∑
i=1,2,3

∫
Ω1

h−2
n (uhn

)i,3ψi33,3 : ψ ∈ C∞0 (Ω1), |ψ(z)| ≤ 1 for all z ∈ Ω1

}
≤ C

(5.9)

for all n ≥ 1. It then follows from the compactness of the BV spaces [20] and the trace theorem [2] that
there exists û ∈ W 1,p(Ω1; R3) such that ∇û ∈ BV (Ω1) and û = y0 on γ × (− 1

2 ,
1
2 ) and that there exists

b̂ ∈ BVp(Ω1) such that for a further subsequence of {uhn}, not relabeled, we have that

uhn
⇀ û in W 1,p(Ω1; R3) and h−1

n uhn,3 ⇀ b̂ in Lp(Ω1; R3)

uhn → û in W 1,1(Ω1; R3) and h−1
n uhn,3 → b̂ in L1(Ω1; R3)

}
as n→∞,

and the convergence is also almost everywhere in Ω1. In addition, from (5.8) and (5.9) it follows that û
and b̂ are independent of z3, so we can set y(z1, z2) = û(z1, z2, z3) and b(z1, z2) = b̂(z1, z2, z3) to prove the
lemma. �

We have the following Γ-convergence theorem:

Theorem 5.1. The functional E(0) : A0 → R is the Γ-limit of the functionals E(h)
1 : A1 → R with respect to

the convergence from Definition 5.1; that is,

Lower Bound: given any (y, b) ∈ A0 and any family {uh ∈ A1 : h > 0} that converges to (y, b), we
have

E(0)(y, b) ≤ lim inf
h→0

E(h)
1 (uh);

Upper Bound: given any (y, b) ∈ A0, there exists a family {uh ∈ A1 : h > 0} that converges to (y, b)
such that

E(0)(y, b) ≥ lim sup
h→0

E(h)
1 (uh),

or equivalently, in view of the lower bound above,

E(0)(y, b) = lim
h→0

E(h)
1 (uh). (5.10)

Proof. Lower Bound. To prove the lower bound, let (y, b) ∈ A0 and let {uh ∈ A1 : h > 0} converge to (y, b)
in the sense of Definition 5.1. Consider a subsequence {uhn}∞n=1 such that

lim
n→∞

E(hn)
1 (uhn

) = lim inf
h→0

E(h)
1 (uh)

and such that ∇Puhn → ∇P ŷ and h−1
n uhn,3 → b̂ almost everywhere in Ω1 as n → ∞. It follows from the

identity (2.2) and∫
Ω

vi,jψij3,3 =
∫

Ω

vi,3ψij3,j for all v ∈W 1,1(Ω; R3) and ψij3 ∈ C∞0 (Ω)
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that∫
Ω1

|DP (∇Puhn
|
√

2h−1
n uhn,3)|

=
∫

Ω1

|DP (∇Puhn
|h−1

n uhn,3|h−1
n uhn,3)|

= sup

{ ∑
i=1,2,3
j,k=1,2

∫
Ω1

(uhn)i,jψijk,k +
∑

i=1,2,3
j=1,2

∫
Ω1

hn
−1(uhn)i,3ψij3,j

+
∑

i=1,2,3
k=1,2

∫
Ω1

hn
−1(uhn

)i,3ψi3k,k : ψ ∈ C∞0 (Ω1), |ψ(z)| ≤ 1 for all z ∈ Ω1

}

≤ sup

{ ∑
i=1,2,3
j,k=1,2

∫
Ω1

(uhn
)i,jψijk,k +

∑
i=1,2,3
j=1,2

∫
Ω1

hn
−1(uhn

)i,jψij3,3 +
∑

i=1,2,3
k=1,2

∫
Ω1

hn
−1(uhn

)i,3ψi3k,k

+
∑

i=1,2,3

∫
Ω1

hn
−2(uhn

)i,3ψi33,3 : ψ ∈ C∞0 (Ω1), |ψ(z)| ≤ 1 for all z ∈ Ω1

}

=
1
hn

∫
Ωhn

|D(∇ũhn
)|.

(5.11)

So, by using Theorem 2.1 on (5.11) and using Fatou’s Lemma to control the φ term, we obtain that

E(0)(y, b) = κ

[∫
Ω1

∣∣∣DP (∇P ŷ|
√

2 b̂)
∣∣∣ +

√
2

∫
Γ1

|b̂− b0|
]

+
∫

Ω1

φ(∇P ŷ|b̂, ẑ, 0) dz

≤ lim inf
n→∞

E(hn)
1 (uhn

)

= lim
n→∞

E(hn)
1 (uhn

)

= lim inf
h→0

E(h)
1 (uh),

and this establishes the first part of the theorem. We note that above and in what follows we use the
convention z = (ẑ, z3) for ẑ ∈ S and z3 ∈ (−1/2, 1/2).

Upper Bound. To prove the upper bound, we would like to consider deformations of the form y(z1, z2) +
hz3b(z1, z2); however, such deformations do not belong to A1 because b does not belong to W 1,p(S; R3) and
∇b does not belong to BV (S). We can overcome this problem by using Theorem 2.2: since b0 ∈W 1,p(S; R3)
and ∇b0 ∈ BV (S), there exists a family of functions bε ∈W 1,p(S; R3) with ∇bε ∈ BV (S) such that bε = b0
on γ for every ε > 0, bε → b almost everywhere in S and in Lp(S) as ε→ 0, and

lim
ε→0

∫
S

|D(∇y|
√

2 bε)| =
∫

S

|D(∇y|
√

2 b)|+
√

2
∫

γ

|b− b0|. (5.12)

We construct the functions

uε
h(z1, z2, z3) = y(z1, z2) + hz3bε(z1, z2) ∈ A1 for 0 < h ≤ 1.

Now ∇Pu
ε
h = ∇P y + hz3∇P bε → ∇P y in Lp(Ω1) and almost everywhere in Ω1 as h→ 0, so we can obtain by

using the growth condition (3.1) for φ, the Carathéodory property of φ given in Section 3, and the dominated
convergence theorem that

1
h

∫
Ωh

φ(∇ũε
h(x), x) dx =

∫
Ω1

φ(∇Pu
ε
h|h−1uε

h,3, ẑ, hz3) dz =
∫

Ω1

φ(∇Pu
ε
h|bε, ẑ, hz3) dz →

∫
Ω1

φ(∇P y|bε, ẑ, 0) dz
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as h→ 0. By the same argument,∫
Ω1

φ(∇P y|bε, ẑ, 0) dz =
∫

S

φ(∇y|bε) →
∫

S

φ(∇y|b) as ε→ 0,

so

lim
ε→0

lim
h→0

1
h

∫
Ωh

φ(∇ũε
h(x), x) dx =

∫
S

φ(∇y|b). (5.13)

We now have since bε is independent of z3 that
1
h

∫
Ωh

|D(ũε
h)|

= sup

{ ∑
i=1,2,3
j,k=1,2

∫
Ω1

(uε
h)i,jψijk,k +

∑
i=1,2,3
j=1,2

∫
Ω1

h−1(uε
h)i,3ψij3,j +

∑
i=1,2,3
k=1,2

∫
Ω1

h−1(uε
h)i,3ψi3k,k

+
∑

i=1,2,3

∫
Ω1

h−2(uε
h)i,3ψi33,3 : ψ ∈ C∞0 (Ω), |ψ(z)| ≤ 1 for all z ∈ Ω1

}

= sup

{ ∑
i=1,2,3
j,k=1,2

∫
Ω1

(uε
h)i,jψijk,k +

∑
i=1,2,3
j=1,2

∫
Ω1

bεψij3,j +
∑

i=1,2,3
k=1,2

∫
Ω1

bεψi3k,k :

ψ ∈ C∞0 (Ω1), |ψ(z)| ≤ 1 for all z ∈ Ω1

}

=
∫

Ω1

∣∣∣DP (∇Pu
ε
h|
√

2 bε)
∣∣∣ .

(5.14)

Since ∇bε ∈ BV (S) and y and bε are independent of z3, we have that

lim
h→0

∫
Ω1

∣∣∣DP (∇Pu
ε
h|
√

2 bε)
∣∣∣ = lim

h→0

∫
Ω1

|DP (∇P (y + hz3bε)|
√

2 bε)| =
∫

S

|D(∇y|
√

2 bε)|. (5.15)

It then follows from (5.14), (5.15), and (5.12) that

lim
ε→0

lim
h→0

1
h

∫
Ωh

|D(ũε
h)| = lim

ε→0
lim
h→0

∫
Ω1

|DP (∇Pu
ε
h|
√

2bε)| =
∫

S

|D(∇y|
√

2 b)|+
√

2
∫

γ

|b− b0|. (5.16)

We can then conclude from (5.13) and (5.16) that

lim
ε→0

lim
h→0

E(h)
1 (uε

h) = E(0)(y, b). (5.17)

We note that in view of (5.17), it is clear that for any η > 0 there exists ε > 0 and h0 > 0 such that

|E(h)
1 (uε

h)− E(0)(y, b)| < η for all 0 < h ≤ h0.

�

Corollary 5.1. For every sequence {uh ∈ A1 : h → 0} of minimizers of E(h)
1 , there exists a subsequence

{uhn
∈ A1 : n = 1, . . . and hn → 0 as n → ∞} and a minimizer (y, b) ∈ A0 of E(0) such that {uhn

∈ A1 :
n = 1, . . . } converges to (y, b) ∈ A0 in the sense of Definition 5.1.

Proof. We first note that E(h)
1 (u0) is bounded independent of h > 0. We can thus prove the existence

of minimizers, uh ∈ A1, of the functional E(h)
1 for fixed h > 0 by using the bounds (5.8) and (5.9), the

compactness and lower-semicontinuity of the BV spaces [20], and Fatou’s lemma.
Since E(h)

1 (u0) is bounded independent of h > 0, we have the uniform bound

E(h)
1 (uh) ≤ E(h)

1 (u0) ≤ C.
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We let {uhn
∈ A1 : n = 1, . . . and hn → 0 as n→∞} be a subsequence such that

lim
n→∞

E(hn)
1 (uhn) = lim inf

h→0
E(h)
1 (uh).

We can conclude from Lemma 5.1 that there exists a further subsequence (not relabeled), {uhn
∈ A1 : n =

1, . . . and hn → 0 as n→∞}, and (y, b) ∈ A0 such that {uhn
∈ A1 : n = 1, . . . } converges to (y, b) ∈ A0 in

the sense of Definition 5.1. It follows from the lower bound in Theorem 5.1 that

E(0)(y, b) ≤ lim
n→∞

E(hn)
1 (uhn) = lim inf

h→0
E(h)
1 (uh).

Since uh ∈ A1 are minimizers of E(h)
1 , we can conclude from the upper bound in Theorem 5.1 that

lim suph→0 E
(h)
1 (uh) ≤ E(0)(y, b), so limh→0 E(h)

1 (uh) exists and

E(0)(y, b) = lim
h→0

E(h)
1 (uh).

We can now conclude from the upper bound in Theorem 5.1 that (y, b) ∈ A0 is a minimizer of E(0). �

We next address the question of Γ-convergence of E(h)
1 with respect to the weak convergence in A1. We

start by considering the problem of minimizing E(0)(y, b) with respect to b.

Lemma 5.2. Let y ∈W 1,p(S; R3) be such that ∇y ∈ BV (S) and y = y0 on γ. Then

inf
b∈BVp(S;R3)

E(0)(y, b) = inf
b∈BVp(S;R3)

b=b0 on γ

E(0)(y, b). (5.18)

Proof. It is clear that the left-hand side is less than or equal to the right-hand side since the infimum is
taken over a larger space.

To show the opposite inequality, it is enough to show that for any b ∈ BVp(S; R3) the energy E(0)(y, b)
can be arbitrarily closely approximated by energies E(0)(y, b) with b ∈ BVp(S; R3) such that b = b0 on
γ. However, this follows by applying Theorem 2.2 with q = p and showing that the elastic energy term∫

S
φ(∇y|bε) again converges to

∫
S
φ(∇y|b) as in the proof of the second part of Theorem 5.1. �

We next have that the infimum on the left-hand side of (5.18) in Lemma 5.2 is attained for any y.

Lemma 5.3. Let y ∈W 1,p(S; R3) be such that ∇y ∈ BV (S) and y = y0 on γ. Then there exists a function
b̃ ∈ BVp(S; R3) such that

E(0)(y, b̃) = inf
b∈BVp(S;R3)

E(0)(y, b).

Proof. Since E(0) is bounded below, we can consider a minimizing sequence {bj}∞j=1 ⊂ BVp(S; R3); in view
of Lemma 5.2, we can also assume that bj = b0 on γ for all j ∈ N. Since the variations of the bj and
their Lp-norms (and thus also the L1-norms) lie in a compact subset of R, we can use the compactness of
BV (S; R3) [20] and retrieve a subsequence, not relabeled, which converges to a function b̃ ∈ BVp(S; R3)
strongly in L1(S; R3), weakly in Lp(S; R3), and almost everywhere in S. In addition, by applying Theo-
rem 2.1, we have ∫

S

|D(∇y|
√

2 b̃)|+
√

2
∫

γ

|b̃− b0| ≤ lim inf
j→∞

∫
S

|D(∇y|
√

2 bj)|.

Similarly, applying Fatou’s Lemma to φ(∇y|bj) gives∫
S

φ(∇y|b̃) ≤ lim inf
j→∞

∫
S

φ(∇y|bj),

and therefore

E(0)(y, b̃) ≤ lim inf
j→∞

E(0)(y, bj)

= inf
b∈BVp(S;R3)

E(0)(y, b).

�
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We are now in the position to find the Γ-limit of the functionals E(h)
1 = 1

h Eh(ũ). Given a continuous
u ∈ A1, we can define the deformation of the midplane

uM (z1, z2) = u(z1, z2, 0)

and a functional

E(0)
1 (u) =

{
min

b∈BVp(S;R3)
E(0)(uM , b) if u,3 = 0 a.e. in Ω1,

+∞ otherwise.
In what follows, C will denote a generic positive constant independent of h, which can change from line

to line.

Theorem 5.2. The functional E(0)
1 : A1 → R ∪ {+∞} is the Γ-limit of the functionals E(h)

1 : A1 → R as
h→ 0 with respect to the weak W 1,p(Ω1; R3) convergence in A1; that is,

Lower Bound: given any u ∈ A1 and any family {uh ∈ A1 : h > 0} such that uh ⇀ u in W 1,p(Ω1; R3)
as h→ 0, we have

E(0)
1 (u) ≤ lim inf

h→0
E(h)
1 (uh);

Upper Bound: given any u ∈ A1, there exists a family {uh ∈ A1 : h > 0} such that uh ⇀ u in
W 1,p(Ω1; R3) as h→ 0 and

E(0)
1 (u) ≥ lim sup

h→0
E(h)
1 (uh),

or equivalently, in view of the lower bound above,

E(0)
1 (u) = lim

h→0
E(h)
1 (uh).

Proof. Lower Bound. Let u ∈ A1 and let {uh : h > 0} ⊂ A1 be such that uh ⇀ u in W 1,p(Ω1) as h→ 0. If
lim infh→0 E(h)

1 (uh) = +∞, then
E(0)
1 (u) ≤ lim inf

h→0
E(h)
1 (uh)

is trivially satisfied.
On the other hand, if lim infh→0 E(h)

1 (uh) < +∞, then we can first consider a subsequence {uhn
}∞n=1 such

that
lim

n→∞
E(hn)
1 (uhn

) = lim inf
h→0

E(h)
1 (uh).

Since then E(hn)
1 (uhn) ≤ C for all n ≥ 1, we have by Lemma 5.1 that there exists b ∈ BVp(Ω1; R3) such that

for a further subsequence of {uhn}, not relabeled, we have that

uhn ⇀ u in W 1,p(Ω1; R3) and h−1
n uhn,3 ⇀ b in Lp(Ω1; R3)

uhn
→ u in W 1,1(Ω1; R3) and h−1

n uhn,3 → b in L1(Ω1; R3)

}
as n→∞,

and the convergence is also almost everywhere in Ω1. It also follows from Lemma 5.1 that u and b

are independent of z3. Therefore, by the definition of E(0)
1 (u), we have for uM (z1, z2) = u(z1, z2, 0) and

bM (z1, z2) = b(z1, z2, 0) that
E(0)
1 (u) ≤ E(0)(uM , bM ). (5.19)

Using (5.11), Theorem 2.1, and Fatou’s Lemma to control the φ term, we have that

E(0)(uM , bM ) = κ

[∫
Ω1

|DP (∇Pu|
√

2 b)|+
√

2
∫

Γ1

|b− b0|
]

+
∫

Ω1

φ(∇Pu|b, ẑ, 0) dẑ

≤ lim inf
n→∞

E(hn)
1 (uhn)

= lim
n→∞

E(hn)
1 (uhn

)

= lim inf
h→0

E(h)
1 (uh).

Combining the above result with (5.19) completes the first part of the proof.
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Upper Bound. If u ∈ A1 is not independent of z3, then E(0)
1 (u) = +∞ and

E(0)
1 (u) ≥ lim sup

h→0
E(h)
1 (uh)

holds for any family {uh ∈ A1 : h > 0} such that uh ⇀ u in W 1,p(Ω1) as h→ 0.
On the other hand, if u,3 = 0 a.e. in Ω1, then by Lemma 5.3 there exists b̃ ∈ BVp(S; R3) such that

E(0)
1 (u) = E(0)(uM , b̃). Using the upper bound of Theorem 5.1, there exists a family {uh ∈ A1 : h > 0} such

that
uh ⇀ u in W 1,p(Ω1) as h→ 0

and

lim
h→0

E(h)
1 (uh) = E(0)(uM , b̃)

= E(0)
1 (u).

�

We note that the family {uh ∈ A1 : h > 0} constructed for the upper bound in Theorem 5.2 actually
converges strongly, that is, uh → u in W 1,p(Ω1) as h → 0. We thus have that the functional E(0)

1 : A1 →
R ∪ {+∞} is also the Γ-limit of the functionals E(h)

1 : A1 → R as h → 0 with respect to the strong
W 1,p(Ω1; R3) convergence in A1.

We can obtain the following result on the convergence of minimizers of E(h)
1 to minimizers of E(0)

1 by an
argument analogous to that of Corollary 5.1.

Corollary 5.2. For every sequence {uh ∈ A1 : h → 0} of minimizers of E(h)
1 , there exists a subsequence

{uhn
∈ A1 : n = 1, . . . and hn → 0 as n → ∞} and a minimizer u ∈ A1 of E(0)

1 such that {uhn
∈ A1 : n =

1, . . . } converges to u ∈ A1 with respect to weak W 1,p(Ω1; R3) convergence in A1.

6. Γ-limit of the Dead-Loaded Film Model

We now assume that the film is subject to a dead load Tn on its boundary, ∂Ωh, with unit exterior normal
n where T ∈ R3×3 is independent of x ∈ Ωh. In this case, the energy of the three-dimensional thin film is
given by

Êh(ũ) = κ

∫
Ωh

|D(∇ũ)|+
∫

Ωh

φ(∇ũ(x), x) dx−
∫

∂Ωh

(Tn) · ũ

= κ

∫
Ωh

|D(∇ũ)|+
∫

Ωh

φ(∇ũ(x), x) dx−
∫

Ωh

T · ∇ũ.

If the elastic energy density φ satisfies the growth condition (3.1), then we can define

φ̂(F, x) = φ(F, x)− T · F

and φ̂ still satisfies (3.1) for some different positive constants, which we still denote by c1, c2, and c3.
In this case, we define the space Âh of admissible deformations of the domain Ωh by

Âh =
{
ũ ∈W 1,p(Ωh; R3) : ∇ũ ∈ BV (Ωh),

∫
Ωh

ũ = 0
}
.

The energies of the deformations ũ ∈ Âh of films are again given by (5.2) with φ(F ) replaced by φ(F )−T ·F.
As before, due to the growth condition (3.1), we have

Âh =
{
ũ : Ωh → R3 : Êh(ũ) < +∞,

∫
Ωh

ũ = 0
}
⊂ C(Ω̂h).



Γ-CONVERGENCE FOR A FILM WITH NON-CONVEX ENERGY 13

The proof of the convergence to a Γ-limit for the problem of the dead-loaded film is similar to the proof
for the film constrained on part of the boundary. We start with the rescaled energy Ê(h)

1 : Â1 → R (defined
by (5.2)–(5.4)), where the space of admissible deformations, Â1, is defined by

Â1 =
{
u ∈W 1,p(Ω1; R3) : ∇u ∈ BV (Ω1),

∫
Ω1

u = 0
}
.

We then show that the Γ-limit of Ê(h)
1 : Â1 → R is given by

Ê(0)(y, b) = κ

∫
S

|D(∇y|
√

2 b)|+
∫

S

φ(∇y(ẑ)|b(ẑ), ẑ, 0) dẑ −
∫

S

T · (∇y|b) for (y, b) ∈ Â0,

where the space of admissible deformations is given by

Â0 = {(y, b) ∈W 1,p(S; R3)× Lp(S; R3) : ∇y, b ∈ BV (S),
∫

S

y = 0}.

The proof of the following compactness result for sequences {uhn
∈ Â1 : n = 1, . . . and hn → 0 as n→∞}

is analogous to that of Lemma 5.1.

Lemma 6.1. Suppose that {uhn
∈ Â1 : n = 1, . . . and hn → 0 as n → ∞} is a sequence of deformations

with uniformly bounded energy Ê(hn)
1 (uhn) ≤ C for all n ≥ 1. Then there exists a further subsequence, also

denoted by {uhn
∈ Â1 : n = 1, . . . }, and (y, b) ∈ Â0 such that {uhn

∈ Â1 : n = 1, . . . } converges to (y, b) ∈ Â0

in the sense of Definition 5.1 (with the spaces A1 and A0 replaced by Â1 and Â0, respectively). We may
take a further subsequence such that the convergence is also almost everywhere in Ω1.

We have the following Γ-convergence theorem.

Theorem 6.1. The functional Ê(0) : Â0 → R is the Γ-limit of the functionals Ê(h)
1 : Â1 → R with respect to

the convergence from Definition 5.1.

Proof. Lower Bound. Let (y, b) ∈ Â0 and let {uh ∈ Â1 : h > 0} converge to (y, b) in the sense of
Definition 5.1. Consider a subsequence {uhn

}∞n=1 such that

lim
n→∞

Ê(hn)
1 (uhn

) = lim inf
h→0

Ê(h)
1 (uh)

and such that ∇Puhn → ∇P ŷ and h−1
n uhn,3 → b̂ almost everywhere in Ω1 as n→∞. Using (5.11), the lower

semicontinuity of the total variation, and Fatou’s Lemma to control the φ term, we have that

Ê(0)(y, b) = κ

∫
Ω1

|DP (∇P ŷ|
√

2 b̂)|+
∫

Ω1

φ(∇P ŷ|b̂, ẑ, 0) dz −
∫

S

T · (∇P ŷ|b̂)

≤ lim inf
n→∞

Ê(hn)
1 (uhn

)

= lim
n→∞

Ê(hn)
1 (uhn)

= lim inf
h→0

Ê(h)
1 (uh),

which establishes the first part of the theorem.
Upper Bound. To prove the upper bound, one should again consider deformations of the form y(z1, z2) +

hz3b(z1, z2); as before, such deformations do not belong to Â1, because b does not belong to W 1,p(S; R3).
However, we can find a family of functions bε ∈ C∞(Ŝ; R3) ⊂W 1,p(S; R3) such that bε → b almost everywhere
in S and in Lp(S) as ε→ 0 [14], and

lim
ε→0

∫
S

|D(∇y|
√

2 bε)| =
∫

S

|D(∇y|
√

2 b)|. (6.1)

Consider now the functions

wε
h(z1, z2, z3) = y(z1, z2) + hz3bε(z1, z2)hz3 ∈ A1 for 0 < h ≤ 1,
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and their mean-zero translations
uε

h = wε
h −

1
|Ω1|

∫
Ω1

wε
h dz ∈ Â1.

We can now apply the same argument as in the proof of the upper bound in Theorem 5.1 to conclude that

lim
ε→0

lim
h→0

Ê(h)
1 (uε

h) = Ê(0)(y, b),

from which it is clear that for any η > 0 there exists ε > 0 and h0 > 0 such that

|Ê(h)
1 (uε

h)− Ê(0)(y, b)| < η for all 0 < h ≤ h0.

�

We can obtain a result on the convergence of minimizers of E(h)
1 (u) to minimizers of E(0)(y, b) by an

argument analogous to that of Corollary 5.2.
The Γ-limit of Ê(h)

1 : Â1 → R can again be obtained by minimizing out b in the energy Ê(0)(y, b). The
existence of a minimizing b̃ can be shown by using the direct method of the calculus of variations as in
Lemma 5.3.

Lemma 6.2. Let y ∈ W 1,p(S; R3) be such that ∇y ∈ BV (S) and
∫

S
y = 0. Then there exists a function

b̃ ∈ BVp(S; R3) such that
Ê(0)(y, b̃) = inf

b∈BVp(S;R3)
Ê(0)(y, b).

Proof. Since Ê(0) is bounded below, we can consider a minimizing sequence {bj}∞j=1 ⊂ BVp(S; R3). Since the
variations of the bj and their Lp-norms (and thus also the L1-norms) lie in a compact subset of R, we can
use the compactness of BV (S; R3) and retrieve a subsequence, not relabeled, which converges to a function
b̃ ∈ BVp(S; R3) strongly in L1(S; R3), weakly in Lp(S; R3), and almost everywhere in S. From the lower
semicontinuity of the total variation, we have∫

S

|D(∇y|
√

2 b̃| ≤ lim inf
j→∞

∫
S

|D(∇y|
√

2 bj |.

Similarly, applying Fatou’s Lemma to φ(∇y|bj) gives∫
S

[
φ(∇y|b̃)− T · (∇y|b̃)

]
≤ lim inf

j→∞

∫
S

[φ(∇y|bj)− T · (∇y|bj)] ,

and therefore

Ê(0)(y, b̃) ≤ lim inf
j→∞

Ê(0)(y, bj)

= inf
b∈BVp(S;R3)

Ê(0)(y, b̃).

�

Next, we define a functional

Ê(0)
1 (u) =

{
min

b∈BVp(S;R3)
Ê(0)(uM , b) if u,3 = 0 a.e. in Ω1,

+∞ otherwise.

Theorem 6.2. The functional Ê(0)
1 : Â1 → R ∪ {+∞} is the Γ-limit of the functionals Ê(h)

1 : Â1 → R as
h→ 0 with respect to the weak W 1,p(Ω1; R3) convergence in Â1.

Proof. Lower Bound. The proof is similar to the proof of Theorem 5.2. Let u ∈ Â1 and let {uh : h > 0} ⊂ Â1

be such that uh ⇀ u in W 1,p(Ω1) as h→ 0. If lim infh→0 Ê(h)
1 (uh) = +∞, then

Ê(0)
1 (u) ≤ lim inf

h→0
Ê(h)
1 (uh)

is trivially satisfied.
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On the other hand, if lim infh→0 Ê(h)
1 (uh) < +∞, then we can first consider a subsequence {uhn

}∞n=1 ⊂ Â1

such that
lim

n→∞
Ê(hn)
1 (uhn

) = lim inf
h→0

Ê(h)
1 (uh).

Since then Ê(hn)
1 (uhn

) ≤ C for all n ≥ 1, we have by Lemma 6.1 that there exists b ∈ BVp(Ω1; R3) such that
for a further subsequence of {uhn

}, not relabeled, we have that

uhn ⇀ u in W 1,p(Ω1; R3) and h−1
n uhn,3 ⇀ b in Lp(Ω1; R3)

uhn
→ u in W 1,1(Ω1; R3) and h−1

n uhn,3 → b in L1(Ω1; R3)

}
as n→∞,

and the convergence is also almost everywhere in Ω1. It also follows from Lemma 6.1 that u and b are
independent of z3. Therefore, we have for uM (z1, z2) = u(z1, z2, 0) and bM (z1, z2) = b(z1, z2, 0) that

Ê(0)
1 (u) ≤ Ê(0)(uM , bM ). (6.2)

Using (5.11), the lower semicontinuity of the total variation, and Fatou’s Lemma to control the φ term, we
have that

Ê(0)(uM , bM ) = κ

∫
Ω1

|DP (∇Pu|
√

2 b)|+
∫

Ω1

φ(∇Pu|b, ẑ, 0) dz −
∫

Ω1

T · (∇Pu|b)

≤ lim inf
n→∞

Ê(hn)
1 (uhn)

= lim
n→∞

Ê(hn)
1 (uhn

)

= lim inf
h→0

Ê(h)
1 (uh).

Combining the above result with (6.2) completes the first part of the proof.
Upper Bound. If u ∈ Â1 is not independent of z3, then Ê(0)

1 (u) = +∞; taking uh = u for all h > 0
produces a family in Â1 such that limh→0 Ê(h)

1 (uh) = Ê(0)
1 (u) = +∞.

On the other hand, if u,3 = 0 a.e. in Ω1, then by Lemma 6.2 there exists b̃ ∈ BVp(S; R3) such that
Ê(0)
1 (u) = Ê(0)(uM , b̃). Using the upper bound of Theorem 6.1, there exists a family {uh ∈ Â1 : h > 0} such

that
uh ⇀ u in W 1,p(Ω1) as h→ 0

and

lim
h→0

Ê(h)
1 (uh) = Ê(0)(uM , b̃)

= Ê(0)
1 (u).

�

We note that we can obtain a result on the convergence of minimizers of E(h)
1 to minimizers of E(0)

1 by an
argument analogous to that of Corollary 5.2.
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