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Abstract. We give an analysis of the stability and uniqueness of the simply laminated microstructure

for all three tetragonal to monoclinic martensitic transformations. The energy density for tetragonal

to monoclinic transformations has four rotationally invariant wells since the transformation has four

variants. One of these tetragonal to monoclinic martensitic transformations corresponds to the shearing

of the rectangular side, one corresponds to the shearing of the square base, and one corresponds to

the shearing of the plane orthogonal to a diagonal in the square base. We show that the simply

laminated microstructure is stable except for a class of special material parameters. In each case that

the microstructure is stable, we derive error estimates for the �nite element approximation.
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1. Introduction

We utilize the geometrically nonlinear theory of martensite [2, 3, 13, 28] to model tetragonal to monoclinic
martensitic transformations. In this theory, the energy density is minimized on multiple energy wells SO(3)U1[
: : : [ SO(3)UN where U1; : : : ; UN for N > 1 are symmetry-related transformation strains (variants) and SO(3)
is the set of all 3 � 3 real orthogonal matrices with determinant equal to one. For tetragonal to monoclinic
transformations, there are four symmetry-related transformation strains (N = 4) [34, 35]. There are three
tetragonal to monoclinic martensitic transformations | one corresponds to shearing of a rectangular face, one
corresponds to shearing of the square base, and one corresponds to shearing of the plane orthogonal to the
diagonal of the square base. For certain boundary constraints or loading conditions, the elastic energy of a
martensitic crystal is minimized only by the �ne-scale mixing of deformation gradients from distinct energy
wells. The simplest example of such a microstructure is the laminate in which two compatible deformation
gradients oscillate in parallel layers of �ne scale. Much recent work has been done to describe more complex
microstructures by using the concept of the Young measure [2, 3, 21, 36, 37].

The stability theory that we use was �rst used to study the orthorhombic to monoclinic transformation
(N = 2) [27]. It was then extended to obtain results for the cubic to tetragonal transformation (N = 3) [23].
Most recently, the stability theory has been used to analyze a cubic to orthorhombic transformation (N = 6) [6].
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In general, the analysis of stability is more di�cult for transformations with N = 4 (such as the tetragonal to
monoclinic transformations studied in this paper) and N = 6 since the additional wells give the crystal more
freedom to deform without the cost of additional energy. In fact, we show here that there are special lattice
constants for which the simply laminated microstructure for the tetragonal to monoclinic transformation is not
stable.

The stability theory can also be used to analyze laminates with varying volume fraction [24] and conforming
and nonconforming �nite element approximations [25, 27]. We also note that the stability theory was used to
analyze the microstructure in ferromagnetic crystals [29]. Related results on the numerical analysis of nonconvex
variational problems can be found, for example, in [7{12,14{16,18, 19, 22, 26, 30{33].

We give an analysis in this paper of the stability of a laminated microstructure with in�nitesimal length scale
that oscillates between two compatible variants. We show that for any other deformation satisfying the same
boundary conditions as the laminate, we can bound the pertubation of the volume fractions of the variants by
the pertubation of the bulk energy. This implies that the volume fractions of the variants for a deformation are
close to the volume fractions of the laminate if the bulk energy of the deformation is close to the bulk energy
of the laminate. This concept of stability can be applied directly to obtain results on the convergence of �nite
element approximations and guarantees that any �nite element solution with su�ciently small bulk energy gives
reliable approximations of the stable quantities such as volume fraction.

In Section 2, we describe the geometrically nonlinear theory of martensite. We refer the reader to [2,3] and to
the introductory article [28] for a more detailed discussion of the geometrically nonlinear theory of martensite.
We review the results given in [34, 35] on the transformation strains and possible interfaces for tetragonal to
monoclinic transformations corresponding to the shearing of the square and rectangular faces, and we then give
the transformation strain and possible interfaces corresponding to the shearing of the plane orthogonal to a
diagonal in the square base.

In Section 3, we give the main results of this paper which give bounds on the volume fraction of the crystal
in which the deformation gradient is in energy wells that are not used in the laminate. These estimates are
used in Section 4 to establish a series of error bounds in terms of the elastic energy of deformations for the L2

approximation of the directional derivative of the limiting macroscopic deformation in any direction tangential
to the parallel layers of the laminate, for the L2 approximation of the limiting macroscopic deformation, for
the approximation of volume fractions of the participating martensitic variants, and for the approximation of
nonlinear integrals of deformation gradients. Finally, in Section 5 we give an application of the stability theory
to the �nite element approximation of the simply laminated microstructure.

2. The Geometrically Nonlinear Model

We use the austenitic tetragonal phase of the crystal at the transformation temperature as the reference
con�guration 
 � R

3 ; and we assume that 
 is a bounded domain with a Lipschitz continuous boundary @
:
We denote deformations by functions y : 
 ! R

3 and corresponding deformation gradients by ry : 
 ! R
3�3

where R3�3 denotes the set of all 3� 3 real matrices.
We shall minimize the total energy

E(y) =
Z



�(ry(x)) dx

over an admissible class A of deformations, where � : R3�3 ! R is the free energy density per unit volume of
the reference con�guration of the crystal at a �xed temperature below the transformation temperature.

We shall assume that the free energy density is frame-indi�erent, that is,

�(RF ) = �(F ) for all F 2 R3�3 and R 2 SO(3): (2.1)



TETRAGONAL TO MONOCLINIC TRANSFORMATION 3

We also assume that it inherits the symmetry of the austenitic phase of the crystal, so that

�(RT
i FRi) = �(F ) for all F 2 R3�3 and Ri 2 G; (2.2)

where G = fR1; : : : ; R8g � SO(3) is the symmetry group of the tetragonal phase given by

R1 = R(�; e1); R2 = R(�; e2); R3 = R(�; e3);

R4 = R(�; e1 + e2); R5 = R(�; e1 � e2); (2.3)

R6 = R(�=2; e3); R7 = R(3�=2; e3); R8 = I:

In the above, feig is a right-handed, orthonormal basis for R3 given by normalized lattice vectors for the
tetragonal phase, and R(�; v) denotes the rotation of � radians about v 2 R3 ; v 6= 0:

We assume that the free energy density is minimized at a transformation (Bain) strain U1 for the tetrag-
onal to monoclinic transformation. We shall see that there then exist three other distinct symmetry-related
transformation strains (variants) U2; U3; U4 such that

fRT
i U1Ri : Ri 2 Gg = fU1; : : : ; U4g:

It also follows by the frame-indi�erence (2.1) and the symmetry (2.2) of the energy density that the energy
density is minimized on the union U of the four energy wells

Ui = SO(3)Ui = fRUi : R 2 SO(3)g for i = 1; : : : ; 4:

By adding a constant, we may assume that the minimum value of � is 0: Finally, we shall assume that � is
continuous and satis�es the growth condition

�(F ) � � kF � �(F )k2 for all F 2 R3�3 ; (2.4)

where � > 0 is a constant and � : R3�3 ! U is a projection de�ned by

kF � �(F )k = min
G2U

kF �Gk for all F 2 R3�3 : (2.5)

This projection exists for any F 2 R3�3 ; since the set U is compact.
We now derive the transformation strains for the three tetragonal to monoclinic transformations. The reader

should note that this derivation itself is not used in the stability analysis given below; only the resulting
transformation strains described in (2.6), (2.7), and (2.8) will be used.

Each of the two-fold rotations Rl for l = 1; : : : ; 5 in the tetragonal symmetry group determines a family of
transformation strains that corresponds to shearing in the plane orthogonal to the axis of the rotation. For each

two-fold rotation Rl for l = 1; : : : ; 5; the transformation strains U
(l)
1 in the corresponding family satisfy [3,34,35]

fRi 2 G : RT
i U

(l)
1 Ri = U

(l)
1 g = fI; Rlg:

The corresponding symmetry-related variants U
(l)
2 ; U

(l)
3 ; U

(l)
4 are then given by

fRT
i U

(l)
1 Ri : Ri 2 Gg = fU (l)

1 ; : : : ; U
(l)
4 g:

The two-fold rotations R1 and R2 correspond to shearing of the rectangular faces and can be analyzed identically
by symmetry. The two-fold rotation R3 corresponds to shearing of the square base and must be treated as a
separate case. The two-fold rotations R4 and R5 correspond to shearing the plane orthogonal to a diagonal
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of the square base and can also be analyzed identically by symmetry. Therefore, we need analyze only the
following three cases corresponding to R2; R3; and R4:

In Case 1, corresponding to R2 and shearing in the plane orthogonal to e2; the transformation strain U
(2)
1

and the symmetry-related transformation strains U
(2)
2 ; U

(2)
3 ; U

(2)
4 are given by

U
(2)
1 =

0
@ �1 0 �4

0 �2 0
�4 0 �3

1
A ; U

(2)
2 =

0
@ �1 0 ��4

0 �2 0
��4 0 �3

1
A ;

U
(2)
3 =

0
@ �2 0 0

0 �1 �4
0 �4 �3

1
A ; U

(2)
4 =

0
@ �2 0 0

0 �1 ��4
0 ��4 �3

1
A ;

(2.6)

where �i > 0 for i = 1; 2; 3; �4 6= 0; and �1�3 � �24 > 0: We shall assume without loss of generality that �4 > 0:

For Case 2, corresponding to R3 and shearing in the plane orthogonal to e3; the transformation strain U
(3)
1

and the symmetry-related transformation strains U
(3)
2 ; U

(3)
3 ; U

(3)
4 are given by

U
(3)
1 =

0
@ �1 �4 0

�4 �2 0
0 0 �3

1
A ; U

(3)
2 =

0
@ �1 ��4 0

��4 �2 0
0 0 �3

1
A ;

U
(3)
3 =

0
@ �2 �4 0

�4 �1 0
0 0 �3

1
A ; U

(3)
4 =

0
@ �2 ��4 0

��4 �1 0
0 0 �3

1
A ;

(2.7)

where �i > 0 for i = 1; 2; 3; �4 6= 0 and �1�2 � �24 > 0: We shall assume without loss of generality that �1 > �2
and �4 > 0:

In Case 3, corresponding to R4 and shearing in the plane orthogonal to e1 + e2; the transformation strain

U
(4)
1 and the symmetry-related transformation strains U

(4)
2 ; U

(4)
3 ; U

(4)
4 are given by

U
(4)
1 =

0
@ �1 �3 �4

�3 �1 ��4
�4 ��4 �2

1
A ; U

(4)
2 =

0
@ �1 ��3 �4

��3 �1 �4
�4 �4 �2

1
A ;

U
(4)
3 =

0
@ �1 �3 ��4

�3 �1 �4
��4 �4 �2

1
A ; U

(4)
4 =

0
@ �1 ��3 ��4

��3 �1 ��4
��4 ��4 �2

1
A ;

(2.8)

where �1 > 0; �2 > 0; �4 6= 0; �1+�3 > 0; and �2(�1��3)�2�24 > 0: We shall assume without loss of generality
that �4 > 0: (Note that it follows from the preceding inequality that �1 + �2 � �3 > 0 and �1�2 � �24 > 0. We
will use these inequalities in the proof of Theorem 3.2.)

In what follows, we will omit the superscript in the notation for the transformation strain U
(l)
i since the case

being considered will always be explicitly given.
There exists a continuous deformation y(x) 2 C0(R3 ;R3 ) such that [2, 28]

ry(x) =
�

QUi for all x such that x � n < s,
Uj for all x such that x � n > s,

where Q 2 SO(3); i; j 2 f1; : : : ; 4g; n 2 R3 ; n 6= 0, and s 2 R; if and only if there exists a 2 R3 such that

QUi = Uj + a
 n: (2.9)
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Thus, if (2.9) holds for a 6= 0; then x � n = s is an interface plane; and we say that the two wells Ui = SO(3)Ui

and Uj = SO(3)Uj are rank-one connected.
The following lemma (which is a special case of Proposition 2.2 in [4]) will be used to construct rank-one

connections for the tetragonal to monoclinic transformation that result from the two-fold rotations in the
symmetry group. This lemma can be veri�ed by direct substitution into (2.9).

Lemma 2.1. Assume that Ui; Uj 2 R
3�3 are positive de�nite and symmetric, that there exists a unit vector

m 2 R3 ; and a rotation R(�;m) 2 G such that

Ui = R(�;m)TUjR(�;m): (2.10)

Then there exist exactly two solutions to (2.9), up to the scaling of a and n by any nonzero constant � 2 R;
given by

a =
2

�

 
U�1j m

jU�1j mj2 � Ujm

!
; n = �m; Q = R(�; U�1j n)R(�;m);

and

a = �Ujm; n =
2

�

 
m� U2

jm

jUjmj2
!
; Q = R(�; a)R(�;m):

The �rst solution given in Lemma 2.1 determines a type I twin and the other solution determines a type II
twin [2,38]. For either type of twin, we call the planes x �n = s twin planes. If a twin is both a type I twin and
a type II twin, then it is said to be a compound twin. The following easily proven identities give type I twins
and type II twins by the above lemma.

Lemma 2.2. The two-fold rotations de�ned in (2.3) act on U1; : : : ; U4 in the following manner:

Case 1: RT
1 U1R1 = RT

3 U1R3 = U2; RT
5 U2R5 = U4;

RT
2 U1R2 = U1; RT

4 U2R4 = U3;
RT
4 U1R4 = U4; RT

1 U3R1 = U3;
RT
5 U1R5 = U3; RT

2 U3R2 = RT
3 U3R3 = U4;

RT
2 U2R2 = U2; RT

1 U4R1 = U4:

Case 2: RT
1 U1R1 = RT

2 U1R2 = U2; RT
4 U2R4 = RT

5 U2R5 = U4;
RT
3 U1R3 = U1; RT

1 U3R1 = RT
2 U3R2 = U4;

RT
4 U1R4 = RT

5 U1R5 = U3; RT
3 U3R3 = U3;

RT
3 U2R3 = U2; RT

3 U4R3 = U4:

Case 3: RT
1 U1R1 = U4; RT

3 U2R3 = RT
4 U2R4 = U4;

RT
2 U1R2 = U2; RT

5 U2R5 = U2;
RT
3 U1R3 = RT

5 U1R5 = U3; RT
2 U3R2 = U4;

RT
4 U1R4 = U1; RT

4 U3R4 = U3;
RT
1 U2R1 = U3; RT

5 U4R5 = U4:

We next use the above lemma to give the following result classifying all possible rank-one connections for the
tetragonal to monoclinic transformations. We note that for Case 2 there exist rank-one connections that are
neither type I nor type II. The interfaces separating such rank-one connections are sometimes called domain
interfaces rather than twin interfaces [20], and we shall maintain this distinction below.

Lemma 2.3. For Case 1, Case 2, and Case 3, we have:
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1. For each i 2 f1; : : : ; 4g; the energy well Ui is not rank-one connected to itself.
2. For any i; j 2 f1; : : : ; 4g; with i 6= j; there are exactly two solutions to the twinning equation (2.9). The

characterization of the solutions to (2.9) is given in Table 1 where

"1 =
�22 � �21 � �24h

2 (�22 � �21 � �24)
2
+ 4�24(�1 + �3)2

i1=2 ; � = arctan
�1 � �2
2�4

;

and

"2 =
2�1�3 � �24h

(2�1�3 � �24)
2
+ �24 (�1 + �2 � �3)

2
i1=2 :

Alternatively,

cos
�

2
=

2
41
2
+

�4q
4�24 + (�1 � �2)

2

3
5
1=2

; sin
�

2
=

2
41
2
� �4q

4�24 + (�1 � �2)
2

3
5
1=2

:

Proof. There do not exist R0; R1 2 SO(3) with R0 6= R1 and a; n 2 R3 ; a; n 6= 0 such that [2, 28]

R1 = R0 + a
 n:

Hence, for each i 2 f1; : : : ; 4g; the energy well Ui is not rank-one connected to itself.
By Lemma 2.2, all of the interfaces in Case 1 and Case 3 and all but the (i; j) = (1; 4) or (i; j) = (2; 3)

interfaces of Case 2 satisfy (2.10). Hence, Lemma 2.1 can be applied to obtain the solutions to (2.9).
To compute the interface normals for (i; j) = (1; 4) or (i; j) = (2; 3) in Case 2, we recall from Lemma 5 in [28]

that n = (�1; �2; 0); n 6= 0; is an interface normal if and only if

jUivj = jUjvj

for v = (��2; �1; 0).
In the following, we will be interested in a simple laminate. We �x i; j 2 f1; : : : ; 4g with i 6= j; and Q; a;

and n with a; n 6= 0 that satisfy the interface equation

QUi = Uj + a
 n: (2.11)

For any �xed � 6= 0; 1; we denote

F� = �QUi + (1� �)Uj = Uj + �a
 n: (2.12)

Then we have the following lemma.

Lemma 2.4. For any � 2 (0; 1); we have that F� =2 U :
Proof. It is proved in Lemma 2.3 of [6] that F� =2 U if (i; j) is a type I or type II twin. This proves the theorem
in Case 1 and Case 3.

We next consider Case 2. If F� 2 U ; then

�QUi + (1� �)Uj = RUk
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Table 1. Characterization of the solutions to (2.9).

CASE (i; j) TYPE OF TWIN INTERFACE NORMALS

(1; 2) compound n1 = e1
compound n2 = e3

(3; 4) compound n1 = e2
compound n2 = e3

(1; 3) I e1 � e2
CASE 1 II (�"1;�"1;

p
1� 2"21)

(1; 4) I e1 + e2
II (�"1; "1;

p
1� 2"21)

(2; 3) I e1 + e2
II ("1;�"1;

p
1� 2"21)

(2; 4) I e1 � e2
II ("1; "1;

p
1� 2"21)

(1; 2) compound n1 = e2
compound e1

(1; 3) compound n1 = e1 � e2
compound e1 + e2

(2; 4) compound n1 = e1 + e2
CASE 2 compound e1 � e2

(3; 4) compound n1 = e1
compound e2

(1; 4) domain (cos �
2 ;� sin �

2 ; 0)

domain (sin �
2 ; cos

�
2 ; 0)

(2; 3) domain (cos �2 ; sin
�
2 ; 0)

domain (sin �
2 ;� cos �2 ; 0)

(1; 2) I e2
II ("2; 0;�

p
1� "22)

(1; 3) compound n1 = e3
compound n2 = e1 � e2

(1; 4) I e1
CASE 3 II (0; "2;

p
1� "22)

(2; 3) I e1
II (0;�"2;

p
1� "22)

(2; 4) compound n1 = e3
compound n2 = e1 + e2

(3; 4) I e2
II ("2; 0;

p
1� "22)

for some i 6= j and k 2 f1; : : : ; 4g: Then by the interface equation (2.11) we have

QUi + (1� �)a
 n = RUk;
Uj + �a
 n = RUk:

(2.13)

If k = i or k = j; then (2.13) implies that the energy well Ui or Uj is rank-one connected to itself. This
contradicts Lemma 2.3. If k 6= i and k 6= j; then (2.13) implies that an interface normal for (i; j) is the same
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as an interface normal for (i; k) and (j; k): This contradicts the table of interface normals for Case 2 given in
Lemma 2.3.

We shall assume that the energy density �(F ) satis�es the growth condition

�(F ) � C1kFkp � C0 for all F 2 R3�3 ;

where C0 and C1 are positive constants independent of F 2 R
3�3 and where we assume p > 3 to ensure that

deformations with �nite energy are uniformly continuous [1]. We can then denote the set of deformations of
�nite energy by

W� = fy 2 C0(�
;R3 ) :

Z



�(ry(x)) dx <1g;

and we can de�ne the set A of admissible deformations as

A = fy 2W� : y(x) = y0(x) for all x 2 @
g (2.14)

where

y0(x) = F�x for all x 2 
:

We can prove the following lemma by constructing laminates with length scale converging to zero whose defor-
mation gradients oscillate with volume fraction � at QUi and 1� � at Uj [12, 28].

Lemma 2.5. Let A be de�ned as in (2.14). Then the total energy E(y) satis�es

inf
y2A

E(y) = 0:

3. Reduction to the Approximate Mixture of Two Strains

Recall the de�nitions (2.5) and (2.14) of � and A; respectively. For each k 2 f1; : : : ; 4g and each y 2 A; we
de�ne


k(y) = fx 2 
 : �(ry(x)) 2 Ukg

and the volume fraction with respect to the k-th energy well Uk to be

�k(y) =
meas
k(y)

meas

:

Since every x 2 
 is in 
k(y) for some k 2 f1; : : : ; 4g; we have that
4X

k=1

�k(y) = 1 for all y 2 A: (3.1)

By the rank-one connection (2.11) and the de�nition of F�

F� = �QUi + (1� �)Uj = Uj + �a
 n; (3.2)

we have that

jF�wj = jUiwj = jUjwj for all w 2 R3 ; w � n = 0: (3.3)
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Since det(QUi) = detUj > 0; we have that U�1j a � n = 0: Hence, we have that

Cof F� = (Cof Uj) (I � �n
 U�1j a) (3.4)

where the cofactor of a nonsingular A 2 R
3�3 is de�ned by Cof A = (detA)A�T : We then obtain from (3.4)

that

j(Cof F�)wj = j(Cof Ui)wj = j(Cof Uj)wj for all w 2 R3 ; w � U�1j a = 0: (3.5)

We next recall that since the subdeterminant of the gradient is a null-Lagrangian [17], we have for y 2 A
that Z




ry(x) dx =

Z



F� dx;Z



Cofry(x) dx =

Z



Cof F� dx:

(3.6)

Finally, we note that it follows from (2.4) thatZ



kry(x)� � (ry(x))k2 dx � ��1E(y) for all y 2 A: (3.7)

The following result is proved in more detail in [6] for the cubic to orthorhombic transformation. In the
estimates below, C will denote a generic positive constant that is independent of y 2 A and is allowed to change
from equation to equation.

Lemma 3.1. Given i; j 2 f1; : : : ; 4 g; Q 2 SO(3); and a; n 2 R; a; n 6= 0 satisfying the twinning equa-
tion (2.11), there exists a constant C > 0 such that for any y 2 A

�1(y;w) �
X
k 6=i;j

�k(y)
�jF�wj2 � jUkwj2

�
� CE(y)1=2 for all w 2 R3 ; jwj = 1; w � n = 0; (3.8)

�2(y;w) �
X
k 6=i;j

�k(y)
�jCof(F�)wj2 � j(Cof Uk)wj2

�

� C
h
E(y)1=2 + E(y)

i
for all w 2 R3 ; jwj = 1; w � U�1j a = 0: (3.9)

Proof. We have by (3.1) and (3.6) that for any w 2 R3 with jwj = 1

�1(y;w) =

4X
k=1

�k(y)
�jF�wj2 � jUkwj2

�

=
1

meas


Z



h
jF�wj2 � j�(ry(x))wj2

i
dx

= � 1

meas


Z



��� hF� � �(ry(x))
i
w
���2 dx (3.10)

+
2

meas


Z



[ry(x) � �(ry(x))]w � F�w dx

� 2

meas


Z



[ry(x)� �(ry(x))]w � F�w dx:
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We obtain from the Cauchy-Schwarz inequality and the above inequality (3.7) that

����
Z



[ry(x)� �(ry(x))]w � F�w dx

���� � CE(y)1=2:

So, it follows from (3.10) that for all w 2 R3 with jwj = 1

�1(y;w) =

4X
k=1

�k(y)
�jF�wj2 � jUkwj2

� � CE(y)1=2: (3.11)

The result (3.8) then follows from the above inequality (3.11) and (3.3).
Next, we obtain similar estimates for the cofactor. We have from (3.1) and (3.6) that for any w 2 R3 ; jwj = 1;

�2(y;w) =

4X
k=1

�k(y)
�j(Cof F�)wj2 � j(Cof Uk)wj2

�

=
1

meas


Z



h
j(Cof F�)wj2 � j(Cof �(ry(x)))wj2

i
dx

= � 1

meas


Z



��� [Cof F� �Cof �(ry(x))]w
���2 dx (3.12)

+
2

meas


Z



[Cof ry(x)�Cof �(ry(x))]w � (Cof F�)w dx

� 2

meas


Z



[Cofry(x)� Cof �(ry(x))]w � (Cof F�)w dx:

Letting F (x) = ry(x) for x 2 
, we have that F (x) = (Fkl(x)) 2 L2(
;R3�3 ). Now �(ry(x)) 2 U for
all x 2 
; so if we set P (x) = �(ry(x)) for x 2 
 we have that P (x) = (Pkl(x)) is uniformly bounded in
L1(
;R3�3 ) for all y 2 A: We have for any k; l; p; q 2 f1; 2; 3g that

FklFpq � PklPpq = (Fkl � Pkl)Ppq + Pkl(Fpq � Ppq) + (Fkl � Pkl)(Fpq � Ppq):

Hence, we have by the Cauchy-Schwarz inequality and (3.7) that

Z



��� [Cofry(x) �Cof �(ry(x))]w
��� dx � C

h
E(y)1=2 + E(y)

i
: (3.13)

Thus, we have from (3.12) and (3.13) that

�2(y;w) =
4X

k=1

�k(y)
�j(Cof F�)wj2 � j(Cof Uk)wj2

�
� C

h
E(y)1=2 + E(y)

i
for all w 2 R3 ; jwj = 1:

(3.14)

The result (3.9) then follows from the above inequality (3.14) and (3.5).

We will use Lemma 3.1 to establish the following inequality for all material parameters not satisfying certain
identities:

�k(y) � C
h
E(y)1=2 + E(y)

i
for all k 2 f1; : : : ; 4gnfi; jg and all y 2 A: (3.15)
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We will also give conditions on the material parameters �i; �i; and �i under which this inequality cannot be
established. This, in turn, will lead to uniqueness or nonuniqueness of the Young measures associated with
energy minimizing sequences of deformations, which we discuss in the next section.

Theorem 3.2. Assume that � satis�es (2.1), (2.2), and (2.4), F� is de�ned as in (2.12) with � 2 (0; 1); and
A is de�ned by (2.14).

Case 1A.: Suppose (i; j) in the de�nition of F� determines either of the compound twins with n = n1:
Then (3.15) holds for all the parameters �i; except those that satisfy

�22
�
�23 + �24

�
=
�
�1�3 � �24

�2
; (3.16)

in which case (3.15) does not hold for � = 1=2:
Case 1B.: Suppose (i; j) in the de�nition of F� determines either of the compound twins with n = n2:

Then (3.15) holds for all the parameters �i; except those that satisfy

�22 = �21 + �24; (3.17)

in which case (3.15) does not hold for � = 1=2:
Case 1C.: Suppose (i; j) and n in the de�nition of F� determine any of the remaining type I or type II

twins. Then (3.15) holds for all the parameters �i:
Case 2A.: Suppose (i; j) in the de�nition of F� determines any of the four compound twins with n = n1:

Then (3.15) holds for all the parameters �i:
Case 2B.: Suppose (i; j) in the de�nition of F� determines any other twin than those in Case 2A above.

Then (3.15) does not hold for any choice of the parameters �i:
Case 3A.: Suppose (i; j) in the de�nition of F� determines either of the compound twins with n = n1:

Then (3.15) holds for all the parameters �i; except those that satisfy

2�1�3 = �24 ; (3.18)

in which case (3.15) does not hold for � = 1=2:
Case 3B.: Suppose (i; j) in the de�nition of F� determines any other twin than those in Case 3A above.

Then (3.15) holds for any choice of the parameters �i:

Proof. Case 1A. Assume that (i; j) = (1; 2) and n = e1: Since this is a compound twin, it follows from
Lemma 2.1 that U�12 a is parallel to e3: Let s; t 2 R be such that w = (s; t; 0)T has unit length. Then using
Lemma 3.1 we have

�2(y;w) = (s2 � t2)
�
�22
�
�23 + �24

�� ��1�3 � �24
�2�

[�3(y) + �4(y)]

� C
h
E(y)1=2 + E(y)

i
:

If (3.16) does not hold, then we can choose s and t such that

(s2 � t2)
�
�22
�
�23 + �24

�� ��1�3 � �24
�2�

> 0:

Therefore,

�3(y) + �4(y) � C
h
E(y)1=2 + E(y)

i
for �22

�
�23 + �24

� 6= ��1�3 � �24
�2
:

Let us now assume that (3.16) holds. We show that if � = 1=2; then we can construct a sequence fyng � A
of deformations whose energy converges to 0, but the volume fractions �3(yn) and �4(yn) converge to 1=2:
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Using Lemma 2.1 and the transformation matrices (2.6), we obtain after a series of calculations that

a =
2�̂

�23 + �24

0
@ ��4

0
�3

1
A

where

�̂ = �4(�1 + �3) > 0:

Using the fact that

F� = U2 + �a
 e1;

we obtain

F T
� F� =

0
@ �(�) 0 (2�� 1) �̂

0 �22 0
(2�� 1) �̂ 0 �23 + �24

1
A

where

�(�) = �21 + �24 + 4�(�� 1)
�̂2

�23 + �24
:

Recall that RT
5 U1R5 = U3 and RT

5 U2R5 = U4; so that

QU1 � U2 = a
 e1

is equivalent to

~QU3 � U4 = �R5a
 e2

with ~Q = RT
5 QR5: Setting

G� = � ~QU3 + (1� �)U4 = RT
5 F�R5;

we have

GT
�G� =

0
@ �22 0 0

0 �(�) (2�� 1) �̂
0 (2�� 1) �̂ �23 + �24

1
A ;

and we conclude that

GT
�G� = F T

� F� if and only if � = 1=2 and �(�) = �22:

However, it is easy to check that �(1=2) = �22 is equivalent to (3.16). Therefore, if (3.16) holds, then F1=2 =
�QG1=2 for some �Q 2 SO(3); and hence we can construct a sequence of deformations fyng � A with E(yn)! 0
such that the volume fractions �3(yn) ! 1=2 and �4(yn) ! 1=2 [12, 28]. This proves that (3.15) cannot be
proven if � = 1=2 and (3.16) holds.

The proof for case (i; j) = (3; 4) and n = e2 follows by symmetry since RT
5 U1R5 = U3 and RT

5 U2R5 = U4:
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Case 1B. Consider the case (i; j) = (1; 2) and n = e3: Let s; t 2 R be such that w = (s; t; 0)T has unit
length. Then we have

�1(y;w) = (s2 � t2)
�
�21 + �24 � �22

�
[�3(y) + �4(y)]

� CE(y)1=2

which leads to

�3(y) + �4(y) � CE(y)1=2 for �22 6= �21 + �24:

Proceeding now as in the previous part, we can de�ne G� = RT
5 F�R5 which corresponds to the compound

twin with (i; j) = (3; 4) and n = e3; and again we conclude that

GT
�G� = F T

� F� if and only if � = 1=2 and (3.17) holds,

leading again to a sequence of deformations fyng � A with E(yn) ! 0 and the volume fractions �3(yn) ! 1=2
and �4(yn)! 1=2:

The proof for case (i; j) = (3; 4) and n = e3 again follows by symmetry since RT
5 U1R5 = U3 and RT

5 U2R5 =
U4:
Case 1C. Consider �rst the case (i; j) = (1; 3) and n = e1 � e2: Let s; t 2 R be such that w = (s; s; t)T has

unit length and st > 0: Then we have since �̂ > 0 that

�1(y;w) = 4 st �̂ [�2(y) + �4(y)]

� CE(y)1=2;

leading to

�2(y) + �4(y) � CE(y)1=2:

Next let (i; j) = (1; 3) and n = (�"1;�"1;
p
1� 2"21): Since this is a type II twin, it follows from Lemma 2.1

that U�13 a is parallel to e1 � e2: Let s; t 2 R be such that w = (s; s; t)T has unit length and st < 0: Then we
have

�2(y;w) = �4 st �̂ �22 [�2(y) + �4(y)]

� C
h
E(y)1=2 + E(y)

i
;

leading to

�2(y) + �4(y) � C
h
E(y)1=2 + E(y)

i
:

The proof for cases (i; j) = (1; 4); (i; j) = (2; 3); and (i; j) = (2; 4) follows from symmetry since RT
2 U1R2 = U1

and RT
2 U3R2 = U4, R

T
1 U1R1 = U2 and RT

1 U3R1 = U3; and RT
3 U1R3 = U2 and RT

3 U3R3 = U4:
Case 2A. Assume �rst that (i; j) = (1; 2) and n = e2: We evaluate �1(y; e1) to get

�1(y; e1) = [�3(y) + �4(y)]
�
�21 � �22

�
� CE(y)1=2;

leading to

�3(y) + �4(y) � CE(y)1=2;
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UU
2

3 1

2

e1 2ee1 e2

e + e1 2

e - e1

1e + e2

U
2

4 U
2

2

e - e1

2

2

Figure 1. The rank-one connections in Case 2.

UU
2

3 1

2

2ee1

e + e1 2

e - e1

U
2

4 U
2

2

2

1 2e + e

G1 G2

Figure 2. The curves of rank-one connections for compound twins with n = n2 must lie in
the interior of D:

since we assumed �1 > �2 > 0:
The proof for case (i; j) = (3; 4) and n = e1 follows by symmetry since RT

4 U1R4 = U3 and RT
4 U2R4 = U4:

Assume next that (i; j) = (1; 3) and n = e1 � e2: Let w = (e1 + e2)=
p
2: Then

�1(y;w) = [�2(y) + �4(y)] 2�4 (�1 + �2)

� CE(y)1=2

leading to

�2(y) + �4(y) � CE(y)1=2:

The proof for case (i; j) = (2; 4) and n = e1+e2 follows by symmetry since R
T
1 U1R1 = U2 and R

T
1 U3R1 = U4:

Case 2B. In this case, the energy wells given by the transformation matrices in (2.7) are essentially two-
dimensional, so the results given by Bhattacharya and Dolzmann in Example 7.3 in [5] give a proof of the
assertion in Case 2B. For completeness, we give a modi�ed version of their proof here.
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UU
2

3 1

2

2ee1

e + e1 2

e - e1

U
2

4 U
2

2

2

G

G2

G1

Figure 3. There is a curve of rank-one connections through any G 2 D that intersects two of
the parabolic curves that bound D:

UU
2

3 1

2

2ee1

e + e1 2

e - e1

U
2

4 U
2

2

2

G1

G

G2

Figure 4. The curve of rank-one connections for domain interfaces must lie in the interior of D:

We set � = detUi and consider the set C of symmetric positive de�nite matrices with determinant equal to
�2; of the form

C =

0
@ C11 C12 0

C12 C22 0
0 0 �23

1
A :

Then there is a one-to-one correspondence between C and R2 given by

C 7! (C11 � C22; 2C12); (3.19)

and we shall implicitly assume this correspondence in what follows. Under this map,

U2
1 7!

�
�21 � �22 ; 2�4(�1 + �2)

�
; U2

2 7!
�
�21 � �22 ;�2�4(�1 + �2)

�
;

U2
3 7!

�
�22 � �21 ; 2�4(�1 + �2)

�
; U2

4 7!
�
�22 � �21 ;�2�4(�1 + �2)

�
:
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Similarly as for the energy wells Ui; we de�ne rank-one connections between sets V1 = SO(3)V1 and V2 =
SO(3)V2 where V1; V2 2 R

3�3 : We say that V1 and V2 are rank-one connected if there exist Q 2 SO(3); a 2
R
3 ; a 6= 0; and n 2 R3 ; n 6= 0; such that

QV2 = V1 + a
 n:

Note that if detV1 = detV2; then V �11 a � n = 0 and det(�QV2 + (1 � �)V1) = detV1: Note also that if V1
and V2 are symmetric positive de�nite, we can identify V1 with V 2

1 and V2 with V 2
2 and, abusing the language

slightly, talk about rank-one connections between V 2
1 and V 2

2 ; and in particular, between elements of C; or,
correspondingly, between points in R2 under the identi�cation (3.19).

Consider now two distinct symmetric positive de�nite matrices A;B such that A2; B2 2 C: It then follows
from Lemma 5 in [28] that there exist two rank-one connections

QB = A+ a
 n

such that n � e3 = a � e3 = 0; and Q = R(�; e3) for some � 2 R: This implies that A�1a �n = 0; and we can write

QB = A(I + s n? 
 n)

for some s 2 R; where n? = R(�=2; e3)n: Thus,

B2 = A2 + s (A2n? 
 n+ n
A2n?) + s2jAn?j2n
 n (3.20)

and we conclude that two matrices in C are rank-one connected if and only if they lie on a quadratic curve
parametrized by (3.20) for s 2 R:

We de�ne the vertex of a parabola to be its point of maximum curvature. We also de�ne its axis to be the
half-line interior to the parabola that extends from the vertex to in�nity. Writing n = jnj(cos �; sin �; 0) and
letting ~A = A2 and ~B = B2; we have

~B11 � ~B22 = ~A11 � ~A22 + sjnj2
�
2 ~A12 � ( ~A11 + ~A22) sin 2�

�
+ s2jnj2jAn?j2 cos 2�;

2 ~B12 = 2 ~A12 + 2sjnj2
�
~A22 cos

2 � � ~A11 sin
2 �
�
+ s2jnj2jAn?j2 sin 2�

where jAn?j2 > 0: It can be seen that in the (C11 � C22; 2C12)-plane this curve is a parabola with axis in the
direction (cos 2�; sin 2�): We note that this curve cannot cross any point G 2 C twice since otherwise G would
be rank-one connected to itself. We can also see that this curve does not degenerate since

�
2 ~A12 � ( ~A11 + ~A22) sin 2�

�
sin 2� 6= 2

�
~A22 cos

2 � � ~A11 sin
2 �
�
cos 2�;

for any positive de�nite matrix ~A 2 C: Therefore, the four rank-one connections from Case 2A corresponding
to compound twins with n = n1 (see Lemma 2.3 for de�nition of n1) determine a closed curve through the
U2
i ; i = 1; : : : ; 4; in the (C11�C22; 2C12)-plane consisting of four parabolic segments bulging out of the domain

D they are bounding (see Figure 1).
The other four compound twins with n = n2 determine parabolas through the corresponding U2

i with
axes pointing in the opposite direction to the axis of the curve of rank-one connections corresponding to its
compound twin system for n = n1: We claim that their vertices (thus the whole segments joining U2

i to U2
j for

the corresponding i and j) lie in D: Assume this is not so, that is, assume that there exists a compound twin
determined by Ui and Uj with n = n2 such that the vertex of the corresponding parabola does not lie in D: We
visualize this example in Figure 2 for the parabolic curve of rank-one connections connecting U2

1 and U2
3 with
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n2 = e1 + e2 corresponding by Lemma 2.1 to

(U3 + �a2 
 n2)
T (U3 + �a2 
 n2) 2 C

where

n2 = e1 + e2; a2 = 2
U�13 n2

jU�13 n2j2
� U3n2:

In this case, we suppose that the parabola intersects the curve of rank-one connections connecting U2
2 and U2

4

with n1 = e1 + e2 at a point

G1 = (U3 + �a2 
 n2)
T (U3 + �a2 
 n2) 2 C

for 0 < � < 1: For an admissible space of deformations

A = fy 2W� : y(x) = y0(x) for all x 2 @
g

where

y0(x) =
p
G1x for all x 2 
;

we can then construct a sequence of laminated deformations fyng � A with E(yn) ! 0 such that the volume
fractions �1(yn) ! � 6= 0 and �3(yn)! 1� � 6= 0: This contradicts the result in Case 2A that since G1 lies on
the curve of rank-one connections connecting U2

2 and U2
4 with n1 = e1 + e2 we must have that �1(yn)! 0 and

�3(yn)! 0:
Next, we let G 2 C be a point in the interior of D; and we then construct a sequence of deformations fyng � A

for

A = fy 2W� : R3 ) : y(x) = y0(x) for all x 2 @
g

where

y0(x) =
p
Gx for all x 2 
;

such that E(yn) ! 0 and �k(yn) 6! 0 for each k 2 f1; : : : ; 4g: This result then provides a proof of Case 2B for

the four compound twin families with n = n2: We de�ne F =
p
G and let

F� = F (I + � v? 
 v)

for some v 2 R
3 ; v 6= 0: This determines a rank-one curve passing through G that intersects the boundary of

D at two points G1 and G2: If we choose v as in Figure 3 such that the axis of the parabola is in the direction
U2
i � G for some i = 1; : : : ; 4; then we know that the two intersections G1 and G2 lie on di�erent parabolic

segments of the boundary of D:We can now construct a sequence of deformations fyng � A such that E(yn)! 0
and �k(yn) 6! 0 for those k for which U2

k participates in the rank-one connections for the parabolic segments
on the boundary of D corresponding to G1 and G2: By rotating v we see that we can construct a sequence
fyng � A such that E(yn)! 0 and �k(yn) 6! 0 for every k 2 f1; : : : ; 4g:

Finally, if we show that the parabolic segments of rank-one connections extending from U2
1 to U2

4 and from
U2
2 to U2

3 also lie in D; the proof will be complete. However, if this were not so, there would exist a curve of
rank-one connections passing through a point G on a parabolic segment of the boundary of D; a point G1 in
the interior of D; and a point G2 on one of the parabolic segments of rank-one connections extending from U2

1
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to U2
4 or from U2

2 to U2
3 (see Figure 4). However, we can see as above that this violates the result in Case 2A

for the boundary segment.
Case 3A. Assume that (i; j) = (1; 3) and n = e3: Let w = (s; t; 0)T for s; t 2 R be of unit length. Then we

have

�1(y;w) = 4 st
�
2�1�3 � �24

�
[�2(y) + �4(y)]

� CE(y)1=2:

Choosing the sign of st to be the same as that of 2�1�3 � �24 ; we conclude that

�2(y) + �4(y) � CE(y)1=2 for 2�1�3 6= �24 :

Assume now that 2�1�3 = �24 : After a series of calculations, we then �nd that

a =
2�̂

(�1 + �3)2

0
@ �1 � �3

�(�1 � �3)
�2�4

1
A

and

F T
� F� =

0
@ (�1 + �3)

2 0 (2�� 1)�̂
0 (�1 + �3)

2 �(2�� 1)�̂
(2�� 1)�̂ �(2�� 1)�̂ �(�)

1
A

where

�̂ = �4(�1 + �2 � �3) > 0

and

�(�) = �22 + 2�24 + 8�(�� 1)
�̂2

(�1 + �3)2
:

Recalling that RT
2 U1R2 = U2 and RT

2 U3R2 = U4; we de�ne G� = RT
2 F�R2 as in the proof for Case 1 and

conclude that GT
1=2G1=2 = F T

1=2F1=2 when (3.18) holds. Therefore we can construct a sequence of deformations

fyng � A with E(yn)! 0 and the volume fractions �2(yn)! 1=2 and �4(yn)! 1=2:
The proof for case (i; j) = (2; 4) and n = e3 follows by symmetry since RT

2 U1R2 = U2 and RT
2 U3R2 = U4:

Case 3B. Consider �rst the case (i; j) = (1; 3) and n = e1� e2: Since this is a compound twin, we have that
U�13 a is parallel to e3: Let s; t 2 R be such that w = (s; t; 0)T has unit length and st < 0: We then have that

�2(y;w) = �4 st �2(�1�2 � �24)(�2�3 + �24) + �24(�1 + �3)
2
�
[�2(y) + �4(y)]

� C
h
E(y)1=2 + E(y)

i
:

Since we have �1�2 � �24 > 0; it follows that

�2(y) + �4(y) � C
h
E(y)1=2 + E(y)

i
:

The proof for case (i; j) = (2; 4) and n = e1+e2 follows by symmetry since R
T
2 U1R2 = U2 and R

T
2 U3R2 = U4:
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Consider the case (i; j) = (1; 2) and the type I interface n = e2: Let s; t 2 R be such that w = (s; 0; t)T has
unit length and st > 0: We then have since �̂ > 0 that

�1(y;w) = 4 st �̂ [�2(y) + �4(y)]

� CE(y)1=2;

leading to

�3(y) + �4(y) � CE(y)1=2:

Consider next the case (i; j) = (1; 2) and the type II interface n = ("2; 0;�
p
1� "22): Since this is a type II

twin, we have that U�12 a is parallel to e2: Let s; t 2 R be such that w = (s; 0; t)T has unit length and st < 0:
We then have that

�2(y;w) = �4 st �̂ (�1 + �3)
2 [�3(y) + �4(y)]

� C
h
E(y)1=2 + E(y)

i
;

leading to

�3(y) + �4(y) � C
h
E(y)1=2 + E(y)

i
:

The proof for the interfaces for cases (i; j) = (1; 4); (i; j) = (2; 3); and (i; j) = (3; 4) follows by symmetry since
RT
4 U1R4 = U1 and RT

4 U2R4 = U4; R
T
7 U1R7 = U2 and RT

7 U2R7 = U3; and RT
3 U1R3 = U3 and RT

3 U2R3 = U4:

4. The Stability and Uniqueness of the Microstructure

In the previous section, we proved the estimate

�k(y) � C
h
E(y)1=2 + E(y)

i
for k 2 f1; : : : ; 4gnfi; jg and all y 2 A; (4.1)

for all of the tetragonal to monoclinic transformations except when the lattice parameters satisfy the identities
given in Theorem 3.2. We recall that

A = fy 2W � : y(x) = y0(x) for x 2 @
g

where

y0(x) = [�QUi + (1� �)Uj ]x for all x 2 
:

The results in this section for the tetragonal to monoclinic transformations can be deduced from the inequality
(4.1) by the identical arguments used to deduce the results from (4.1) for the cubic to orthorhombic case [6]
by making the obvious modi�cations in the argument to change N = 6 to N = 4: For this reason, we state the
results given in this section without proof.

We also recall that the energy density � is minimized on the union U of the four energy wells

Ui = SO(3)Ui = fRUi : R 2 SO(3)g for i = 1; : : : ; 4 ;

and that � is continuous and satis�es the growth condition

�(F ) � � kF � �(F )k2 for all F 2 R3�3 :
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We shall also assume that the lattice parameters do not satisfy the identities given in Lemma 3.2 so that the
inequality (4.1) holds.

Our �rst theorem in this section gives estimates for the derivative of the limiting macroscopic deformation
y in any direction tangential to the parallel layers of the laminate, for the L2 approximation of the limiting
macroscopic deformation, and for the weak convergence of the limiting macroscopic deformation.

Theorem 4.1. (1) For any w 2 R3 such that w � n = 0 and jwj = 1, we haveZ



j[ry(x)�ry0(x)]wj2 dx � C
h
E(y)1=2 + E(y)

i
for all y 2 A:

(2) We have Z



jy(x)� y0(x)j2 dx � C
h
E(y)1=2 + E(y)

i
for all y 2 A:

(3) For any Lipschitz domain ! � 
, there exists a constant C = C(!) > 0 such that




Z
!

[ry(x) �ry0(x)] dx




 � C

h
E(y)1=8 + E(y)1=2

i
for all y 2 A:

The following corollary shows that the deformation gradients of energy-minimizing sequences of deformations
must oscillate with a length scale that converges to zero.

Corollary 4.2. There does not exist any y 2 A such that

E(y) = min
z2A

E(z):

For �xed i; j 2 f1; : : : ; 4g with i 6= j, we can de�ne a projection �ij : R
3�3 ! Ui [ Uj by

kF � �ij(F )k = min
G2Ui[Uj

kF �Gk for all F 2 R3�3 :

We also de�ne the operators � : R3�3 ! SO(3) and � : R3�3 ! fQUi; Ujg by the unique decomposition

�ij(F ) = �(F )�(F ) for all F 2 R3�3 :

The following theorem proves that the deformation gradients of energy-minimizing sequences of deformations
must oscillate between QUi and Uj :

Theorem 4.3. We haveZ



kry(x) ��(ry(x))k2 dx � C
h
E(y)1=2 + E(y)

i
for all y 2 A:

For any subset ! � 
, � > 0, and y 2 A, we de�ne the sets

!i�(y) = fx 2 ! : �(ry(x)) = QUi and kry(x)�QUik < �g ;
!j�(y) = fx 2 ! : �(ry(x)) = Uj and kry(x)� Ujk < �g :

The next theorem demonstrates that the deformation gradients of energy-minimizing sequences of defor-
mations must oscillate with local volume fraction � at QUi and local volume fraction 1 � � at Uj : It also
demonstrates that the Young measure for this problem is unique [3, 28] and is given by

� = ��QUi
+ (1� �)�Uj

:
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Theorem 4.4. For any Lipschitz domain ! � 
 and any � > 0; there exists a constant C = C(!; �) > 0 such
that for all y 2 A �����meas!

i
�(y)

meas!
� �

�����+
�����meas!

j
�(y)

meas!
� (1� �)

����� � C
h
E(y)1=8 + E(y)1=2

i
:

We now denote by V the Sobolev space of all measurable functions f : 
� R
3�3 ! R such that

kfk2V =

Z



(�
ess sup
F2R3�3

krF f(x; F )k
�2

+ jrzf (x)nj2 + zf (x)
2

)
dx <1;

where zf : 
! R is de�ned by

zf (x) = f(x;QUi)� f(x; Uj) for all x 2 
:

The �nal theorem in this section gives an estimate for the weak convergence of nonlinear functions of the
deformation gradient.

Theorem 4.5. We have����
Z



ff(x;ry(x)) � [�f(x;QUi) + (1� �)f(x; Uj)]g dx
����

� CkfkV
h
E(y)1=4 + E(y)1=2

i
for all f 2 V and all y 2 A:

5. The Finite Element Approximation of Microstructure

The simplest �nite element approximation of the variational problem

inf
v2A

E(v)

is given by

inf
vh2Ah

E(vh)

where Ah is a �nite-dimensional subspace of A de�ned for h 2 (0; h0] for some h0 > 0: The following approxi-
mation theorem for the energy can be proven for the most widely used Pk or Qk type conforming �nite elements
on quasi-regular meshes, in particular for the P1 linear elements de�ned on tetrahedra and the Q1 trilinear
elements de�ned on rectangular parallelepipeds [6, 12, 23{25,27, 28].

Theorem 5.1. For each h 2 (0; h0], there exists yh 2 Ah such that

E(yh) = min
zh2Ah

E(zh) � Ch1=2: (5.1)

For the remainder of this section, we again recall that the energy density � is minimized on the union U of
the four energy wells

Ui = SO(3)Ui = fRUi : R 2 SO(3)g for i = 1; : : : ; 4 ;

and that � is continuous and satis�es the growth condition

�(F ) � � kF � �(F )k2 for all F 2 R3�3 :
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We shall also assume that the lattice parameters do not satisfy the identities given in Lemma 3.2 so that the
results of the previous section hold. In this case, the following corollaries for the �nite element approximation
follow directly from the above estimate for the approximation of the energy (5.1). We assume below that
yh 2 Ah is a �nite element approximation satisfying the quasi-optimality condition

E(yh) � � inf
zh2Ah

E(zh) (5.2)

for some constant � � 1 independent of h:

Corollary 5.2. (1) There exists of positive constant C such that for any yh 2 Ah satisfying (5.2) we haveZ



jyh(x)� y0(x)j2 dx � Ch1=4

and Z



kryh(x)��(ryh(x))k2 dx � Ch1=4:

(2) For any w 2 R3 such that w � n = 0 and jwj = 1, we haveZ



j[ryh(x) �ry0(x)]wj2 dx � Ch1=4

for any yh 2 Ah satisfying (5.2).
(3) If ! � 
 is a Lipschitz domain, then there exists a constant C = C(!) > 0 such that for any yh 2 Ah

satisfying (5.2) we have 




Z
!

[ryh(x)�ry0(x)] dx




 � Ch1=16:

Corollary 5.3. (1) If ! � 
 is a Lipschitz domain and � > 0; then there exists a constant C = C(!; �) > 0
such that for any yh 2 Ah satisfying (5.2)�����meas!

i
�(yh)

meas!
� �

�����+
�����meas!

j
�(yh)

meas!
� (1� �)

����� � Ch1=16:

(2) We have ����
Z



ff(x;ryh(x)) � [�f(x;QUi) + (1� �)f(x; Uj)]g dx
���� � CkfkV h1=8

for any f 2 V and any yh 2 Ah satisfying (5.2).
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