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Abstract

Phase transformation, metastability, and microstructure offer great challenges

to the development and analysis of numerical methods. We present some solutions
to these problems that we have developed in the context of martensitic structural

phase transformations. These crystals are observed to be in metastable states
(local minima), sometimes exhibit fine-scale spatial oscillation, and hysteresis is
observed as the temperature or boundary forces are varied. We present compu-

tational methods and a numerical analysis for this microstructure, and we discuss
several multiscale methods and the different metastable states that they compute.

1 Introduction

To model the evolution of metastable states, we have developed a computational model
that nucleates the first order phase change since otherwise the crystal would remain stuck
in local minima of the energy as the temperature or boundary forces are varied [4]. Our
finite element model for the quasi-static evolution of the martensitic phase transformation
in a thin film nucleates regions of the high temperature phase during heating and regions
of the low temperature phase during cooling. A more detailed discussion of our algorithm
and graphical displays of computational results for our model are given in [4].

A review of mathematical and numerical methods for martensitic phase transformation
and microstructure is given in [4]. A more recent study of the numerical analysis of
microstructure is given in [2]. A more extensive bibliography of papers on the numerical
analysis of the martensitic phase transformation and microstructure can be found at
http://www.math.umn.edu/~luskin/.

2 A Computational Model for Martensitic Phase

Transformation

We have developed a computational model for the quasi-static evolution of the martensitic
phase transformation of a single crystal thin film [4]. Our thin film model [3] includes
surface energy, as well as sharp phase boundaries with finite energy. The model also
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includes the nucleation of regions of the high temperature phase (austenite) as the film
is heated through the transformation temperature and nucleation of regions of the low
temperature phase (martensite) as the film is cooled. The nucleation step in our algorithm
is needed since the film would otherwise not transform.

For our total-variation surface energy model, the bulk energy for a film of thickness h > 0
with reference configuration Ωh ≡ Ω × (−h/2, h/2), where Ω ⊂ R

2 is a domain with a
Lipschitz continuous boundary ∂Ω, is given by the sum of the surface energy and the
elastic energy

κ

∫

Ωh

|D(∇u)| +
∫

Ωh

φ(∇u, θ) dx (8)

where
∫

Ωh

|D(∇u)| is the total variation of the deformation gradient [3] and κ is a small
positive constant.

We have shown in [3] that energy-minimizing deformations u of the bulk energy (8) are
asymptotically of the form

u(x1, x2, x3) = y(x1, x2) + b(x1, x2)x3 + o(x2
3) for (x1, x2) ∈ Ω, x3 ∈ (−h/2, h/2),

(which is similar to that found for a diffuse interface model [1]) where (y, b) minimizes
the thin film energy

E(y, b, θ) = κ

(
∫

Ω

|D(∇y|b|b)|+
√

2

∫

∂Ω

|b− b0|
)

+

∫

Ω

φ(∇y|b, θ) dx (9)

over all deformations of finite energy such that y = y0 on ∂Ω. The map b describes the
deformation of the cross-section relative to the film [1, 3]. We denote by (∇y|b) ∈ R

3×3

the matrix whose first two columns are given by the columns of ∇y and the last column
by b. In the above equation,

∫

Ω
|D(∇y|b|b)| is the total variation of the vector valued

function (∇y|b|b) : Ω → R
3×4.

We describe our finite element approximation of (9) by letting the elements of a triangu-
lation τ of Ω be denoted by K and the inter-element edges by e. We denote the internal
edges by e ⊂ Ω and the boundary edges by e ⊂ ∂Ω. We define the jump of a function ψ
across an internal edge e ⊂ Ω shared by two elements K1, K2 ∈ τ to be

[[ψ ]]e = ψe,K1
− ψe,K2

where ψe,Ki
denotes the trace on e of ψ|Ki

, and we define ψ|e to be the trace on e for
a boundary edge e ⊂ ∂Ω. Next, we denote by P1(τ ) the space of continuous, piecewise
linear functions on Ω which are linear on each K ∈ τ and by P0(τ ) the space of piecewise
constant functions on Ω which are constant on each K ∈ τ . Finally, for deformations
(y, b) ∈ P1(τ ) × P0(τ ) and temperature fields θ̃ ∈ P0(τ ), the energy (9) is well-defined
and we have that

κ

[
∫

Ω

|D(∇y|b|b)|+
√

2

∫

∂Ω

|b− b0|
]

+

∫

Ω

φ(∇y|b, θ̃) dx

= κ

(

∑

e⊂Ω

∣

∣

∣
[[ (∇y|b|b) ]]e

∣

∣

∣
|e| +

√
2
∑

e⊂∂Ω

∣

∣

∣
b|e − b0|e

∣

∣

∣
|e|
)

+
∑

K∈τ

φ
(

(∇y|b, θ̃)|K
)

|K|,
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where | · | denotes the euclidean vector norm, |e| denotes the length of the edge e, |K| is
the area of the element K, and

∣

∣

∣
[[ (∇y|b|b) ]]e

∣

∣

∣
=
(

∣

∣[[∇y ]]e
∣

∣

2
+ 2

∣

∣[[ b ]]e
∣

∣

2
)1/2

.

The above term is not differentiable everywhere, so we have regularized it in our numerical
simulations.

Since martensitic alloys are known to transform on a fast time scale, we model the
transformation of the film from martensite to austenite during heating by assuming that
the film reaches an elastic equilibrium on a faster time scale than the evolution of the
temperature, so the temperature θ̃(x, t) can be obtained from a time-dependent model
for thermal evolution [4]. To compute the evolution of the deformation, we partition the
time interval [0, T ] for T > 0 by 0 = t0 < t1 < · · · < tL−1 < tL = T and then obtain the
solution (y(t`), b(t`)) ∈ Aτ for ` = 0, . . . , L by computing a local minimum for the energy
E(v, c, θ(t`)) with respect to the space of approximate admissible deformations

Aτ = {(v, c) ∈ P1(τ ) × P0(τ ) : v = y0 on ∂Ω}. (10)

Since the martensitic transformation strains U ⊂ R
3×3 are local minimizers of the energy

density φ(F, θ) for all θ near θT , a deformation that is in the martensitic phase will con-
tinue to be a local minimum for the bulk energy E(v, c, θ(t)) for θ > θT . Hence, our com-
putational model will not simulate a transforming film if we compute (y(t`), b(t`)) ∈ Aτ

by using an energy-decreasing algorithm with the initial state for the iteration at t`
given by the deformation at t`−1, that is, if (y[0](t`), b

[0](t`)) = (y(t`−1), b(t`−1)). We
have thus developed and utilized an algorithm to nucleate regions of austenite into
(y(t`−1), b(t`−1)) ∈ Aτ to obtain an initial iterate (y[0](t`), b

[0](t`)) ∈ Aτ for the com-
putation of (y(t`), b(t`)) ∈ Aτ .

We used an “equilibrium distribution” function, P (θ), to determine the probability for
which the crystal will be in the austenitic phase at temperature θ and we assume that
an equilibrium distribution has been reached during the time between t`−1 and t`. The
distribution function P (θ) has the property that 0 < P (θ) < 1 and

P (θ) → 0 as θ → −∞ and P (θ) → 1 as θ → ∞.

At each time t`, we first compute a pseudo-random number σ(K, `) ∈ (0, 1) on every
triangleK ∈ τ, and we then compute (y[0](t`), b

[0](t`)) ∈ Aτ by (xK denotes the barycenter
of K):

1. If σ(K, `) ≤ P (θ(xK , t`)) and (∇y(xK, t`−1)|b(xK, t`−1), θ(xK , t`)) is in
austenite, then set

(y[0](t`), b
[0](t`)) = (y(t`−1), b(t`−1)) on K.

2. If σ(K, `) ≤ P (θ(xK , t`)) and (∇y(xK, t`−1)|b(xK, t`−1), θ(xK , t`)) is in
martensite, then transform to austenite on K.

3. If σ(K, `) > P (θ(xK , t`)) and (∇y(xK, t`−1)|b(xK, t`−1), θ(xK , t`)) is in
austenite, then transform to martensite on K.

15



NA03 Dundee 2003

4. If σ(K, `) > P (θ(xK , t`)) and (∇y(xK, t`−1)|b(xK, t`−1), θ(xK , t`)) is in
martensite, then set

(y[0](t`), b
[0](t`)) = (y(t`−1), b(t`−1)) on K.

We then compute (y(t`), b(t`)) ∈ Aτ by the Polak-Ribière conjugate gradient method
with initial iterate (y[0](t`), b

[0](t`)) ∈ Aτ . We have also experimented with several other
versions of the above algorithm for the computation of b[0](t`). For example, the above
algorithm can be modified to utilize different probability functions P (θ) in elements with
increasing and decreasing temperature. We can also prohibit the transformation from
austenite to martensite in an element in which the temperature is increasing or prohibit
the transformation from martensite to austenite in an element for which the temperature
is decreasing.
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