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A FINITE ELEMENT MODEL FOR MARTENSITIC THIN FILMS

PAVEL BĚLÍK AND MITCHELL LUSKIN

Abstract. A finite element approximation of the thin film limit for a sharp interface bulk energy
for martensitic crystals is given. The energy density models the softening of the elastic modulus
controlling the low-energy path from the cubic to the tetragonal lattice, the loss of stability of
the tetragonal phase at high temperatures and the loss of stability of the cubic phase at low
temperatures, and the effect of compositional fluctuation on the transformation temperature. The
finite element approximation is then used to simulate the hysteresis of a martensitic thin film
obtained after applying a biaxial loading cycle to the film below the transformation temperature.

1. Introduction

We present a finite element approximation of the Γ-limit dimensional reduction of a three-
dimensional bulk energy for the deformation of a martensitic crystal [3, 4, 6–8, 13, 16, 19, 20, 25–29,
31–34,37,40–43]. The rigorously derived thin film model [11,12,15] is more general than previously
considered and includes transverse shear, normal compression, and biaxial loading. The free energy
density models the softening of the elastic modulus controlling the low-energy path from the cubic
to the tetragonal lattice, the loss of stability of the tetragonal phase at high temperatures and the
loss of stability of the cubic phase at low temperatures, and the effect of compositional fluctuation
on the transformation temperature [13,14,24].

We use this finite element approximation to simulate the hysteresis of the structural phase trans-
formation in a single-crystal film that undergoes a biaxial loading cycle [1,5] in the low temperature
phase.

We describe the bulk energy in Section 2, the loading cycle in Section 3, the thin film model in
Section 4, the finite element approximatin in Section 5, the elastic energy density in Section 6, the
numerical experiment in Section 7, and the numerical results and their interpretation in Section 8.

2. The Bulk Energy

We will assume that the deformation u : Ωh → R3 of a martensitic film of thickness h > 0
with reference configuration Ωh ≡ S × (−h/2, h/2) ⊂ R3 for S = (−1/2, 1/2)× (−1/2, 1/2) quasi-
statically evolves as the temperature θ and boundary load are varied. We model the total free
energy for the deformation u : Ωh → R3 by the sum of its interfacial energy, elastic energy, and
loading potential energy

Eh(u; θ, σ) = κ

∫
Ωh

|D(∇u)|+
∫

Ωh

φ(∇u(x), θ, c(x)) dx−
∫

∂Ωh

σn · u dS, (2.1)

where κ > 0 is a measure of interfacial energy per unit area, φ(F, θ, c) is a composition-dependent
free energy density, c(x) is a fixed composition for the alloy, and σn is the boundary load where
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σ ∈ R3×3 and n ∈ R3 is the unit exterior normal to the boundary, ∂Ωh. The total variation of the
deformation gradient,

∫
Ωh
|D(∇u)|, is defined in Section 4.

3. The Loading Cycle

We start the simulation with the film in the cubic (high temperature) reference state

u(x) = x for all x ∈ Ωh.

We then compute the quasi-static cooling of the film from 315 K through the temperature at
which the cubic phase loses stability and the tetragonal (low-temperature) phase becomes stable
to 215 K. These transformation temperatures and other moduli used in this paper were chosen to
fit experimental data for Fe70Pd30 and are more fully explained in Section 6.

At θ = 215 K, we apply a loading cycle for σ ∈ R3×3 having the biaxial form

σ =

σ1 0 0
0 σ2 0
0 0 0

 ,

so σ1 is the normal tensile load on the edges x1 = −1/2 and x1 = 1/2, and σ2 is the normal tensile
load on the edges x2 = −1/2 and x2 = 1/2. The loading cycle is:

(1) Uniaxial loading: σ1 increases from 0.0 GPa to 0.3 GPa with σ2 = 0.0 GPa.
(2) Biaxial loading cycle: For σ1 + σ2 = 0.3 GPa,

(a) σ1 decreases from 0.3 GPa to 0.0 GPa, then
(b) σ1 increases from 0.0 GPa to 0.3 GPa.

(3) Unaxial unloading: σ1 decreases from 0.3 GPa to 0.0 GPa with σ2 = 0.0 GPa.
We will see in Figure 1 and Table 1 that the volume fraction of the “red” variant increases

during the uniaxial loading with our computational model. The volume fraction of the “red”
variant decreases and the volume fraction of the “yellow” variant increases during the first stage
of the biaxial loading cycle as σ1 is decreased and σ2 is increased, and the volume fraction of the
“red” variant increases and the volume fraction of the “yellow” variant decreases during the second
stage of the biaxial loading cycle as σ1 is increased and σ2 is decreased. The film then remains
nearly entirely in the “red” variant during the subsequent unloading.

After the completion of the loading cycle, the film is first heated from 215 K to 315 K, cooled
from 315 K to 215 K, heated again from 215 K to 315 K, and then finally cooled from 315 K to
215 K. We observe in Figures 2–3 and Tables 2–3 that the film returns to the “red” variant after
each heating and cooling cycle.

We derive a numerical approximation by first replacing the bulk energy (2.1) by its thin film
Γ-limit [12, 15] and by then introducing a finite element approximation. We then discretize the
temperature and loading cycles described above, and to advance the continuation in temperature
or load we compute a local minimum of the energy by the Polak-Ribière conjugate gradient method
with initial iterate given by the previous state.

4. The Thin Film Model

We will use the free energy density for martensitic crystals with softening and compositional
fluctuation introduced in [14, 24]. This free energy density φ(F, θ, c) is a continuous function φ :
R3×3

+ × (θ0, θ1) × [0, 1] → R of the deformation gradient F ∈ R3×3
+ (where R3×3

+ denotes the set of
3× 3 matrices with positive determinant), the temperature θ ∈ (θ0, θ1), and a compositional order
parameter c ∈ [0, 1]. We assume that the free energy density, φ = φ(F, θ, c), is frame indifferent and
has the material symmetry of the cubic (austenitic) crystalline phase. Since the transformation
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temperature, θT , depends monotonically and continuously on the composition, c, in the remainder of
this paper we will denote the energy density as a function of transformation temperature, θT , rather
than composition, c; and we use the notation φ = φ(F, θ, θT ) for F ∈ R3×3

+ and θ, θT ∈ (θ0, θ1).
We assume that the function θT : Ω1 → (θ0, θ1) is fixed as the temperature and load are varied

and satisfies the Carathéodory condition [15,18,35]
(1) θT (x̂, x3) is continuous in x3 ∈ (−1/2, 1/2) for almost every x̂ ∈ S,
(2) θT (x̂, x3) is measurable in x̂ ∈ S for every x3 ∈ (−1/2, 1/2).

In the bulk free energy (2.1), the interfacial energy in a layer separating a region between phases
and variants is proportional to the product of the surface area of the interface and the magnitude
of the jump in the deformation gradient. We denote this interfacial energy by κ

∫
Ωh
|D(∇u)|, where

the total variation of the deformation gradient [11,12,21,23] is given by∫
Ωh

|D(∇u)|

= sup

 ∑
i,j,k=1,2,3

∫
Ωh

ui,j(x)ψijk,k(x) dx : ψ ∈ C∞0 (Ωh; R3×3×3), |ψ(x)| ≤ 1 for all x ∈ Ωh


We use the usual euclidean norm, the square root of the sum of the squares of all the components,
for the above norm, | · |. With this definition, the total variation of a piecewise smooth deforma-
tion gradient ∇u that has jumps [[∇u ]]σj across the piecewise smooth surfaces σj , j = 1, . . . , J,
separating the open sets ω` in a disjoint union Ωh =

∑L
`=1 ω` is given by∫

Ωh

|D(∇u)| =
J∑

j=1

∫
σj

|[[∇u ]]σj | dS +
L∑

`=1

∫
ω`

√√√√ 3∑
m,n=1

(
∂2u

∂xm∂xn

)2

dx.

Our analysis of the Γ-limit of the bulk energy (2.1) as h → 0 [12, 15] assumed that the energy
density φ(F, θ, θT ) satisfies the growth condition

c1|F |p − c2 ≤ φ(F, θ, θT ) ≤ c3(|F |p + 1) for all F ∈ R3×3 and θ, θT ∈ (θ0, θ1), (4.1)

where c1, c2, and c3 are fixed positive constants, and p > 3 to ensure that deformations with finite
energy are uniformly continuous [2, 22]. (We note that our analysis of the Γ-limit in [12, 15] used
the assumption that φ(F, θ, θT ) is defined for all F ∈ R3×3 rather than only for F ∈ R3×3

+ . The
equations defining φ(F, θ, θT ) in Section 6 can be used for all F ∈ R3×3, although the deformation
gradient in all of the computations reported in this paper had positive determinate everywhere.)
Since σ is assumed constant in space, we have by the divergence theorem that

Eh(u; θ, σ) = κ

∫
Ωh

|D(∇u)|+
∫

Ωh

φ(∇u(x), θ, θT (x)) dx−
∫

Ωh

σ · ∇u(x) dx, (4.2)

for u in the space of admissible deformations

Ā1 =
{
u ∈W 1,p(Ω1; R3) : ∇u ∈ BV (Ω1),

∫
Ω1

u = 0
}
.

We showed in [12,15] that the Γ-limit of (4.2) scaled by the thickness, Eh(u; θ, σ)/h, is given by

Ē(0)(y, b; θ, σ) = κ

∫
S
|D(∇y|

√
2b)|+

∫
S
φ(∇y(x̃)|b(x̃), θ, θT (x̃, 0) dx̃−

∫
S
σ · (∇y(x̃)|b(x̃)) dx̃ (4.3)
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for pairs (ỹ, b̃) ∈ Ā0, where the space of admissible deformations of the thin film is given by

Ā0 = {(y, b) ∈W 1,p(S; R3)× Lp(S; R3) : ∇y, b ∈ BV (S),
∫

S
y = 0}. (4.4)

The “deformation gradient” matrix (∇y|b) ∈ R3×3 has ∇y for its first two columns and b as
its last column. The “integral”

∫
S |D(∇y|

√
2b)| is the total variation of the vector-valued function

(∇y|
√

2b) : S → R3×3. The map y : S → R3 gives the deformation of the midplane of the film, and
the map b : S → R3 gives the deformation of the cross-section relative to the film [9,11,12].

Since we will only be concerned with the thin film model in the remainder of this paper, we will
use the notation θT (x̂) for θT (x̂, 0).

5. Finite Element Approximation

We denote a triangulation of S by τ with its triangular elements denoted by K. We define the
jump of a piecewise constant function ψ : S → R3×3 across an inter-element edge e separating two
elements K1,K2 ∈ τ by

[[ψ ]]e = ψe,K1 − ψe,K2 ,

where ψe,Ki denotes the trace on e of ψ|Ki for i = 1, 2. We note that we only use the norm of the
jump in what follows, so there is no ambiguity caused by the sign of the jump.

To develop the finite element approximation, we constrain the deformation y(x̃) to lie in P̄1(τ),
the space of continuous functions on S with mean value zero,

∫
S y = 0, which are linear on each

K ∈ τ, and we constrain the midplane strain b(x̃) to lie in P0(τ), the space of functions on S which
are constant on each K ∈ τ . The space of approximate admissible functions is then given by

Āτ = P̄1(τ)× P0(τ) ⊂ Ā0.

For (y, b) ∈ Āτ and θ, θT ∈ P0(τ), the energy (4.3) is given by

κ

∫
S
|D(∇y|

√
2b)|+

∫
S
φ(∇y(x̃)|b(x̃), θ, θT (x̃)) dx̃−

∫
S
σ · (∇y(x̃)|b(x̃)) dx̃

= κ
∑
e⊂S

∣∣∣[[ (∇y|√2b) ]]e
∣∣∣ |e|+ ∑

K∈τ

φ
(
∇y|b, θ, θT )|K

)
|K| −

∑
K∈τ

σ · (∇y(x̃)|b(x̃))|K |K|,
(5.1)

where |K| is the area of the element K and∣∣∣[[ (∇y|√2b) ]]e
∣∣∣ =

(∣∣[[∇y ]]e
∣∣2 + 2

∣∣[[ b ]]e
∣∣2)1/2

.

6. The Elastic Energy Density

To model the first-order cubic to tetragonal structural phase transformation at the transformation
temperature, θT , we shall assume that at temperatures θ > θT the free energy density, φ(F, θ, θT ),
as a function of the deformation gradient F ∈ R3×3

+ is minimized on the group of proper rotations,
SO(3); and that for temperatures θ < θT the free energy density as a function of the deformation
gradient F ∈ R3×3

+ is minimized on

M = SO(3)U1 ∪ SO(3)U2 ∪ SO(3)U3,

where

U1 =

γ 0 0
0 α 0
0 0 α

 , U2 =

α 0 0
0 γ 0
0 0 α

 , U3 =

α 0 0
0 α 0
0 0 γ

 . (6.1)
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We chose the transformation stretches [14]

α = 0.9837, γ = 1.0260. (6.2)

Following [14], the free energy density φ(F, θ, θT ) is defined in terms of the right Cauchy-Green
strain, C = F TF ∈ S3×3

+ (where S3×3
+ is the space of symmetric positive definite matrices), to be

φ(F, θ, θT ) = min{WA(C, θ), WM (C, θ) + η(θ, θT )}, (6.3)

where WA(C, θ) and WM (C, θ) are cubic and tetragonal elastic free energy densities, respectively,
normalized to be zero only at their respective energy wells SO(3) and M, and η(θ, θT ) is the free
energy difference between the cubic and tetragonal phases. This free energy difference between the
cubic and tetragonal phases, η(θ, θT ), satisfies

η(θ, θT ) =

{
WA(U2

1 , Af ) θ−θT
Af−θT

for θT ≤ θ < θ1,

−WM (I,Mf ) θ−θT
Mf−θT

for θ0 < θ < θT ,
(6.4)

for Af and Mf such that θ0 < Mf < θT < Af < θ1. The free energy difference, η(θ, θT ), is a
continuous, piecewise linear function such that the local minimum corresponding to the tetragonal
phase (F ∈ M) disappears at θ = Af , and the local minimum corresponding to the cubic phase
(F ∈ SO(3)) disappears at θ = Mf . In physical measurements, Af is the temperature at which
an unloaded martensitic crystal has fully transformed to austenite (the high-temperature phase)
during heating, and Mf is the temperature at which an unloaded martensitic crystal has fully
transformed to martensite (the low-temperature phase) during cooling.

We assume that the crystal has an average composition c̄ = |S|−1
∫
S c(x̃) dx̃ that corresponds

to a transformation temperature θ̄T , and we model the transformation temperature θT (x̃) by inde-
pendent normally distributed random variables θT |K , indexed by the triangles K ∈ τ, with mean

θ̄T = 270 K (6.5)

and standard deviation θsd > 0 given by (7.1). Hence, θT ∈ P0(τ), and we obtain a value for θT |K
on each triangle K ∈ τ by using a normally distributed pseudo-random number generator with
mean θ̄T and standard deviation θsd.

The other transformation temperatures Af and Mf are then defined as piecewise constant func-
tions with respect to the triangles K in the triangulation τ by

Af (x̃) = θT (x̃) + 5 K and Mf (x̃) = θT (x̃)− 15 K. (6.6)

It follows from (6.5) and (6.6) that Af (x̃) and Mf (x̃) have standard deviation σ = 25 K and mean
values

Āf = 275 K and M̄f = 255 K.
In [14], we constructed the following austenitic free energy WA(C, θ) having cubic symmetry:

WA(C, θ) = a(θ)
[
(C11 − C22)2 + (C22 − C33)2 + (C11 − C33)2

]
+ b(θ) (trC − 3)2 + c(θ)

(
C2

12 + C2
23 + C2

13

) (6.7)

where Cij ∈ R are the matrix elements of the right Cauchy-Green strain C = F TF ∈ S3×3
+ and the

elastic moduli satisfy

a(θ) ≈ 0.0185 θ̃ GPa, b(θ) ≈
(
17.2− 0.0196 θ̃

)
GPa, c(θ) ≈

(
36.3 + 0.005 θ̃

)
GPa,

for
θ̃ = max{θ −Ms, 0},
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with Ms such that Mf < Ms < θT being the temperature at which one of the elastic moduli of the
cubic phase converges to zero or “softens.” We take

Ms(x̃) = θT (x̃)− 5 K,

so Ms has standard deviation θsd and mean value

M̄s = 265 K.

In our model, we have that θT (x̃) = (Ms(x̃) + Af (x̃))/2 as proposed in [39]. The moduli were
chosen to fit experimental data for Fe70Pd30 [36].

We constructed a martensitic free energy density WM3(C, θ) as a function of C by

WM3(C, θ) = d
[
(C11 − α2)2 + (C22 − α2)2

]
+ e(C33 − γ2)2 + f(C11 − α2)(C22 − α2)

+ g(C33 − γ2)(C11 + C22 − 2α2) + h1(C2
23 + C2

13) + h2C
2
12,

where in terms of the elastic moduli CM
ij in the Voigt notation [14], we have

d = CM
11/8α

4, e = CM
33/8γ

4, f = CM
12/4α

4,

g = CM
13/4(αγ)2, h1 = CM

44/2(αγ)2, h2 = CM
66/2α

4.

We construct the free energy densities WM1(C, θ) and WM2(C, θ), minimized at U2
1 and U2

2 ,
respectively, by symmetry from

WM1(C, θ) = WM3

(
R

(π
2
, e2

)T
CR

(π
2
, e2

)
, θ

)
for all C ∈ S3×3

+ ,

WM2(C, θ) = WM3

(
R

(π
2
, e1

)T
CR

(π
2
, e1

)
, θ

)
for all C ∈ S3×3

+ ,

where R
(

π
2 , ei

)
∈ G denotes the rotation of π

2 radians about the orthogonal basis vectors ei ∈ R3.
By the symmetry in our construction of the free energy densities WMi(C, θ), there exists ν > 0,

independent of i and j, such that

WMi(U
2
j , θ) = ν for i 6= j.

We then have that the quartic function

W i
M (C, θ) =

1
2ν

WMi(C, θ)
3∑

j=1

[
WMj (C, θ)(1− δij)

]
(where δij is the Kronecker delta) is nonnegative, equals 0 only at the variant U2

i , and matches
the prescribed tetragonal elastic moduli at U2

i . We then define the martensitic elastic free energy
density WM (C, θ) by

WM (C, θ) = min
1≤i≤3

W i
M (C, θ).

In our computations, we used the following moduli in GPa:

CM
11 = 150, CM

33 = 150, CM
12 = 130, CM

13 = 130, CM
44 = 70, CM

66 = 75.
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7. The Numerical Experiment

We computed solutions to the temperature and loading cycle described in Section 1 by following
a path of local minima of the thin film energy Ē0(y, b; θ, σ) for (y, b) ∈ Āτ as θ, σ1, and σ2 are
varied. We set the surface energy parameter κ = 10−4 GPa ·L where L is the length of the crystal
in meters which has been scaled to S = (−1/2, 1/2) × (−1/2, 1/2). Since the elastic moduli have
been taken to be of the order 100 GPa, the dimensionless surface energy κ/(CL) is of the order
10−6.

Our finite element mesh was constructed by dividing the square computational domain S =
(−1/2, 1/2)× (−1/2, 1/2) into N ×N congruent squares with sides of length h = 1/N . We further
subdivided each of these squares into four triangles by the diagonals of the square. Piecewise
affine deformations constrained to the energy-minimizing martensitic variants (6.1) have piecewise
constant gradients (∇y|b) that can be discontinuous across the diagonals [9,11,33], so this grid allows
an efficient approximation of a solution with microstructure. We present results on meshes with
N = 50 and N = 100. Numerical analysis and computational experiments have shown that similar
results can be obtained for finer meshes that are not oriented to the microstructure [30,33,34].

We set the standard deviation of the transformation temperatures to be

θsd =
N

2
K, (7.1)

so that θsd = 25 K for our simulations with N = 50 and θsd = 50 K for our simulations with
N = 100. The scaling of (7.1) with respect to N is consistent with assuming that θT (x̃) depends
linearly on the composition c(x̃) and assuming that the average composition c|K on the triangles
K ∈ τ are independent normally distributed random variables indexed by the triangles K ∈ τ.

We used increments of 1 K in our quasi-static continuation during the cooling of the thin film
from 315 K to 215 K and then during the heating from 215 K to 315 K. We used increments of 0.003
GPa for the stress σ1 during the uniaxial loading, biaxial loading cycle, and uniaxial unloading.
The continuation is given by the following path (in units K for the temperature θ and GPa for the
stress σ):

1. Cooling: θ` = 315− `, σ1,` = 0, σ2,` = 0 for ` = 0, . . . , 100.

2. Uniaxial loading: θ` = 215, σ1,` = 0.003(`− 101), σ2,` = 0 for ` = 101, . . . , 201.
3. Biaxial loading cycle:

a. θ` = 215, σ1,` = 0.3− 0.003(`− 202), σ2,` = 0.003(`− 202) for ` = 202, . . . , 302.

b. θ` = 215, σ1,` = 0.003(`− 303), σ2,` = 0.3− 0.003(`− 303) for ` = 303, . . . , 403.

4. Unaxial unloading: θ` = 215, σ1,` = 0.3− 0.003(`− 404), σ2,` = 0 for ` = 404, . . . , 504.

5. Heating: θ` = 215 + (`− 505), σ1,` = 0, σ2,` = 0 for ` = 505, . . . , 605.

6. Cooling: θ` = 315− (`− 606), σ1,` = 0, σ2,` = 0 for ` = 606, . . . , 706.

7. Heating: θ` = 215 + (`− 707), σ1,` = 0, σ2,` = 0 for ` = 707, . . . , 807.

8. Cooling: θ` = 315− (`− 808), σ1,` = 0, σ2,` = 0 for ` = 808, . . . , 908.

9. Heating: θ` = 215 + (`− 909), σ1,` = 0, σ2,` = 0 for ` = 909, . . . , 1009.

We assume that the rate of cooling, loading, unloading, and heating is slow enough so that the film
is always in elastic equilibrium at a constant temperature and load.

Given an initial deformation (y0, b0), we determine the deformation (y`, b`) ∈ Āτ for ` =
1, . . . , 1009 by computing a local minimum for the energy Ē0(y, b; θ`, σ`) from the Polak-Ribière
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conjugate gradient method [10,38] with initial iterate

(y[0]
` , b

[0]
` ) = (y`−1, b`−1). (7.2)

After the conjugate gradient iterations have converged to an acceptable tolerance afterM iterations,
we set

(y`, b`) = (y[M ]
` , b

[M ]
` ).

We can compute the gradient (g1, g2) ∈ Āτ = P̄1(τ) × P0(τ) of the energy Ē(0)(y, b; θ, σ) with
respect to (y, b) ∈ Āτ by the L2(S)-projection of the first variation of the energy∫

S
(g1ỹ + g2b̃) = δĒ(0)(y, b; θ, σ)(ỹ, b̃) for all (ỹ, b̃) ∈ Āτ . (7.3)

In the above equation, δĒ(0)(y, b; θ, σ)(ỹ, b̃) is the Gâteaux derivative of the energy in the direction
(ỹ, b̃) ∈ Āτ . It can then be seen that the constraint

∫
S y = 0 is preserved by the conjugate gradient

iterates since
∫
S g1 = 0 for all of the gradients.

The simulation starts with the film at 315 K in the nearly flat cubic (high-temperature) state
given by

y0(x1, x2) = (x1, x2, δy0) for all x̃ = (x1, x2) ∈ S,
b0(x1, x2) = (0, 0, 1) for all x̃ = (x1, x2) ∈ S,

(7.4)

where a small perturbation of the perfectly flat state is given by δy0. Since the temperatures at
which the high-temperature phase loses stability on the triangles K ∈ τ are independent normally
distributed random variables Mf |K with mean M̄f = 255 K and standard deviation θsd, we expect
that Mf |K < 315 K for nearly all triangles K ∈ τ. Thus, we can expect that the Polak-Ribière
conjugate gradient method will give a state (y1, b1) that is close to the energy-minimizing perfectly
flat state

y0(x1, x2) = (x1, x2, 0) for all x̃ = (x1, x2) ∈ S,
b0(x1, x2) = (0, 0, 1) for all x̃ = (x1, x2) ∈ S,

(7.5)

while retaining some pertubation in y3 that will potentially allow a larger out-of-plane transforma-
tion and attainment of lower energy as the film is cooled.

We obtain the components of δy0 at the nodes of the triangulation by a normally distributed
pseudo-random number generator with mean 0.0 and standard deviation 0.005h, where h = 1/N.
Since the values of the computed pseudo-random δy0 at the mesh points are independent, the
standard deviation of the derivatives of δy0 are 0.005

√
2 and 0.005

√
6 depending on the orientation

of the triangle.
As in [10], we actually computed the gradients used in the conjugate gradient iterations by

replacing the “mass” matrix on the left-hand side of (7.3) by the identity matrix with respect to the
classical Lagrangian shape functions for the continuous, piecewise linear finite element space [17].
With this replacement, the mean-zero property

∫
S y` = 0 is only approximately satisfied, but we

can replace y` by y` − |S|−1
∫
S y` to regain the mean-zero property at any time in the iteration

without affecting the computation since the energy (4.3) is invariant with respect to the translation
y → y + c for c ∈ R3.

8. Numerical Results and Interpretation

In Figures 1–3 and Tables 1–3, we present the results of the temperature and loading cycle
described in Section 7. The coloring scheme used to exhibit the deformation gradient (∇y|b)|K
is based on its distance to the nearest phase or variant [33]. Elements with deformation gradient
(∇y|b)|K near the cubic phase F ∈ SO(3) are colored a shade of grey and elements with deformation
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gradient (∇y|b)|K near the tetragonal variants are colored shades of red for F ∈ SO(3)U1, shades
of yellow for F ∈ SO(3)U2, and shades of blue for F ∈ SO(3)U3.

The phase transformation predicted by our model during the cooling and heating phases has been
studied in [14]. The energy density that we used for the computations reported in this paper allows
the loss of stability of both of the phases at sufficiently high or low temperatures, compositional
variation, and elastic softening [11,14].

After the first cooling, the film reaches the twinned state in the upper left corner of Figure 1. The
volume fractions of the red variant (SO(3)U1) and the yellow variant (SO(3)U2) are approximately
equal. We then observe in the first row of Figure 1 (see also Table 1) the growth of the volume
fraction of the red variant as the film undergoes an increasing uniaxial tensile load σ1 on the planes
x1 = −1/2 and x1 = 1/2. In the second row, we observe the growth of the volume fraction of the
yellow variant during the first phase of the biaxial loading cycle as the tensile load σ1 on the planes
x1 = −1/2 and x1 = 1/2 decreases and the tensile load σ2 on the planes x2 = −1/2 and x2 = 1/2
increases while maintaining the constraint σ1 + σ2 = 0.3 GPa. In the third row, we observe the
growth of the volume fraction of the red variant during the second phase of the biaxial loading cycle
as the load σ1 increases and the load σ2 decreases while maintaining the constraint σ1 + σ2 = 0.3
GPa. In the fourth row, we find that the film remains nearly completely in the “red” variant as
the film is unloaded.

These results can be understood theoretically by noting that the elastic energy density of the
crystal is equal in the red variant (SO(3)U1) and the yellow variant (SO(3)U2) since

φ(U1, θ, θT ) = φ(U2, θ, θT ),

and the loading potential energy density −σ ·F is minimized on SO(3)U1∪SO(3)U2 at U1 if σ1 > σ2

and at U2 if σ1 < σ2. More generally, we can expect the loading energy density during the biaxial
loading cycle to be approximately of the form

−σ · [λR1U1 + (1− λ)R2U2]

where 0 < λ < 1 and R1, R2 ∈ SO(3). We then can expect that λ → 0 and R2 → I as σ1 − σ2

decreases and that λ→ 1 and R1 → I as σ1 − σ2 increases during the biaxial loading cycle.
In Figures 2–3 and Tables 2–3, we can observe the effect of the first loading cycle on the state of

the film after cooling from 315 K to 215 K. We see in the left figure of the third row of Figures 2–3
that the film is nearly completely in the red variant after being heated to 315 K and then cooled to
215 K following the first loading cycle. We observe in the right figure of the first row of Figures 2–3
that the volume fractions of the red and yellow variants were nearly equal following the initial
cooling from 315 K to 215 K. After another heating and cooling cycle, we find in the left figure of
the fourth row in Figures 2–3 that the film continues to return to a nearly uniform “red” variant
state. The return to the “red” variant state is not as complete for the coarser mesh N = 50 as
for the finer mesh N = 100. One source for the difference is from sampling the transformation
temperatures θT (x̃) for N = 50 and N = 100 by a normally distributed pseudo-random number
generator with standard deviation (7.1) for θT |K , indexed by the triangles K ∈ τ. We hope that a
complete error analysis can be obtained to explain this.

During the biaxial loading cycle, the deformation (y, b) evolves through a sequence of metastable
states for the energy Ē0(y, b; θ`, σ`) as the loading stress σ is varied. We note that the red (SO(3)U1)
and yellow (SO(3)U2) variants can lose stability for the Gibbs free energy density, the sum of the
elastic energy density and the loading potential energy density

φ(F, θ, θT )− σ · F,
as the loading stress σ is cycled.
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σ1 − σ2 red variant yellow variant
0.00 41.47 24.94
0.15 90.76 1.50
0.3 99.82 0.00
0.00 98.48 0.00
-0.3 0.00 99.85
0.00 0.00 98.50
0.3 99.84 0.00
0.15 99.56 0.00
0.00 94.08 0.00

Table 1. (N = 100) Percent volume fraction for the red and yellow variant during
the biaxial loading cycle shown in Figure 1.

temperature K red variant yellow variant
315 0.00 0.00
215 36.82 36.17
215 99.99 0.00
315 0.00 0.00
215 79.22 9.47
315 0.00 0.00
215 80.47 8.55
315 0.00 0.00

Table 2. (N = 50) Percent volume fraction for the red and yellow variant during
the cooling and heating cycles shown in Figure 2.

temperature K red variant yellow variant
315 0.00 0.00
215 41.47 24.94
215 94.08 0.00
315 0.00 0.00
215 93.45 0.00
315 0.00 0.00
215 93.45 0.00
315 0.00 0.00

Table 3. (N = 100) Percent volume fraction for the red and yellow variant during
the cooling and heating cycles shown in Figure 3.

At the end of the cycle with σ1 = 0.3 GPa and σ2 = 0.0 GPa the film is nearly completely in
the red variant state. During the next heating stage, the film transforms nearly completely to the
high-temperature phase, but remains in a metastable state with a path back to the red variant
phase during the subsequent cooling.
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Figure 1. (N = 100) First row: Uniaxial tensile loading σ1 = 0.0, 0.15, 0.3 GPa
with σ2 = 0.0 GPa on the planes x1 = −1/2 and x1 = 1/2 after the first cooling.
Second row: Biaxial loading σ1 = 0.3, 0.15, 0.0 GPa for σ1 + σ2 = 0.3 GPa. Third
row: Biaxial loading σ1 = 0.0, 0.15, 0.3 GPa for σ1 + σ2 = 0.3 GPa. Fourth row:
Uniaxial tensile unloading σ1 = 0.3, 0.15, 0.0 GPa with σ2 = 0.0 GPa.
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Figure 2. (N = 50) First row: Initial state at 315 K (left) and after cooling to
215 K (right). Second row: At 215 K after loading cycle (left) and then heating
to 315 K (right). Third row: After cooling to 215 K (left) and heating to 315 K
(right). Fourth row: After cooling again to 215 K (left) and heating to 315 K (right).
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Figure 3. (N = 100) First row: Initial state at 315 K (left) and after cooling to
215 K (right). Second row: At 215 K after loading cycle (left) and then heating
to 315 K (right). Third row: After cooling to 215 K (left) and heating to 315 K
(right). Fourth row: After cooling again to 215 K (left) and heating to 315 K (right).
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[16] C. Carstensen and P. Plecháč. Numerical analysis of a relaxed variational model of hysteresis in two-phase solids.
Math. Model. Numer. Anal., 35(5):865–878, 2001.

[17] P. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978.
[18] B. Dacorogna. Direct methods in the calculus of variations. Springer-Verlag, Berlin, 1989.
[19] P. W. Dondl and J. Zimmer. Modeling and simulation of martensitic phase transitions with a triple point. J.

Mech. Phys. Solids, 52(9):2057–2077, 2004.
[20] W. E and X. Li. Multiscale modeling of dynamics of solids at finite temperature. J. Mech. Phys. Solids, submitted.
[21] L. C. Evans and R. F. Gariepy. Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton, FL,

1992.
[22] D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of Second Order. Springer-Verlag, New

York, 1998.
[23] E. Giusti. Minimal Surfaces and Functions of Bounded Variation. Birkhäuser Verlag, Basel-Boston, Mass., 1984.
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