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Abstract

We extend and generalize an approach to conduct fitting models of periodically repeating
data. Our method first detrends the data from a baseline function and then fits the data to a
periodic (trigonometric, polynomial, or piecewise linear) function. The polynomial and piece-
wise linear functions are developed from assumptions of continuity and differentiability across
each time period. We apply this approach to different datasets in the environmental sciences
in addition to a synthetic dataset. Overall the polynomial and piecewise linear approaches
developed here performed as good (or better) compared to the trigonometric approach when
evaluated using statistical measures (R2 or the AIC). These results were consistent when the
number of measurements decreased (through random removal of data). Future applications
of the fitting method could account for higher-order terms in the polynomial function or
refinements to the estimation of parameters in the piecewise linear function.

Keywords: periodic timeseries, polynomial functions, piecewise linear functions, net carbon
uptake, evapotranspiration

1 Introduction

Biological systems can exhibit periodic behavior in
their physiological patterns (such as internal circadian
rhythms [23, 41]) or due to phenological or seasonal
changes [5]. In many circumstances, collection of nearly-
continuous datasets demonstrate processes that can be
classified as periodic and span a range of disciplines from
ecology [13], atmospheric science [39], or neuroscience [8].
These datasets are then used for modeling and analysis
activities [17, 19, 21, 31, 37].

Consider for example Figure 1, a timeseries of net car-
bon uptake for a forest in Colorado. Negative values im-
ply a net carbon loss from the ecosystem to the atmo-
sphere (which signifies conversion of atmospheric carbon
by plants). Figure 1 shows the long-term (baseline) trend
is for this ecosystem to absorb carbon. However there
is a distinct annual pattern where the net carbon is in-
creasing through the wintertime periods, but decreases
(almost monotonically) during the summer months.

A way to mathematically model this periodic behav-
ior is with combinations of trigonometric functions of a
known period [7]. This approach is an example of em-
pirical curve fitting, which parameterizes measured data
(ti, yi) with a function y = F (t, α⃗), where α⃗ is a set of un-
known parameters. Usually a least squares criterion is ap-
plied that minimizes the difference between the function
y = f(x) and measured data [10]. When the data exhibit

1Department of Mathematics, Statistics, & Computer Science,
Augsburg University, Minneapolis, MN

Figure 1: Timeseries of cumulative net carbon uptake
for a high elevation coniferous forest in Colorado. This
periodically repeating timeseries shows the ecosystem is
slowly accumulating carbon, with an annual period of de-
crease due to actively absorbing carbon during the sum-
mer months. A long-term linear trend is plotted with the
data (blue line).
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a long term trend (such as a linear decrease in Figure 1)
one approach is to first “detrend” the data by determin-
ing a function to represent the long-term trend [15, 42]
and then conducting the empirical curve fit to the residual
between y⃗ and the long-term trend.
Following detrending of data, empirical curve fitting

procedures of periodic data can be done through a va-
riety of approaches, often using trigonometric functions
as a starting point in the analysis. Edwards [9] uses
an approach that relies on transforming the data to a
unit circle and examining the probability distribution
from that transformation. David and Bliss [7] generalizes
the trigonometric approach with Fourier analysis. Huang
et al. [14] generalizes orthogonal least squares regression
to determine the phase shift in a data, especially applied
to circadian rhythms. Additionally, because the vast ma-
jority of these datasets have time as a predictor, principles
of timeseries analysis can be applied [16].

For this manuscript we develop and evaluate alterna-
tive approaches for empirical fitting of periodically re-
peating data without using trigonometric functions. Our
approach utilizes polynomial functions to first detrend
the long-term cycle, although many other types of func-
tions could conceivably be used. We would expect some
degree of overfitting as the degree of the baseline polyno-
mial increases, so we evaluate the minimum degree of the
polynomial applied for detrending the long-term trend.
For the periodic components, our approach specifies the
degree of smoothness at the endpoints of the period (for
Figure 1 this would mean the start and end of the annual
cycles be both continuous and differentiable). Along with
trigonometric functions, we develop a polynomial and a
piecewise linear approach for fitting the periodic compo-
nents. We evaluate our approaches to a range of nearly
continuous datasets found in the ecological literature.

2 Methods

2.1 Datasets utilized

We used a variety of datasets that span a range of different
environmental observational data, along with a synthetic
dataset for demonstration of the fitting procedure.

2.1.1 Cumulative Net Ecosystem Carbon Ex-
change

The data set utilized here is the net carbon uptake from
a high-elevation coniferous forest in Colorado (Figure 1;
Monson et al. [24]). Measurement of the net carbon
uptake is derived from mass conservation and microm-
eteorological and biophysical principles, which can be
represented as an example of the Fundamental Theo-
rem of Calculus [43]. The net carbon uptake is influ-

enced by whole ecosystem respiration (which causes the
cumulative carbon uptake to increase) and gross pri-
mary productivity (which causes the net carbon uptake
to decrease). Units of the net carbon uptake are g C
m−2. A broad network of sites (FLUXNET) measure
the net carbon uptake and other associated measurements
(www.fluxdata.org). For this study we use daily mea-
surements of the net carbon uptake. We will refer to this
dataset as “Total Net C Uptake”.

2.1.2 Mauna Loa carbon dioxide

The Mauna Loa carbon dioxide dataset is a long-term
record of directly measured CO2 mole fraction (from
1958 to the present day) from the Mauna Loa observa-
tory in Hawaii [18, 39]. For this analysis we use the
monthly mean value of CO2 (units parts per million
or ppm) provided by NOAA (www.esrl.noaa.gov/gmd/
ccgg/trends/). We will refer to this dataset as “CO2”.
Figure 4 includes the CO2 data used in this study.

2.1.3 Evapotranspiration data

The third data set is evapotranspiration (denoted as ET ,
units mm H2O m−2), which is the combined sum of water
lost to the atmosphere through evaporation (from soils,
water runoff, or plant interception) and plant transpira-
tion. Over a landscape the rate of transpiration can be
inferred from satellite remote sensing products collected
by NASA MODIS Terra and Aqua satellites [6, 11, 22,
25, 25], provided on an eight-day timescale [26, 35, 36].
Values of ET at a specific location are derived from
a model that takes into consideration the surface veg-
etation, daily meteorological variables and surface re-
flectance. We accessed the ET data product through the
AρρEEARS web service (https://lpdaacsvc.cr.usgs.
gov/appeears/, AρρEEARS Team [2]), for a deciduous
forest located in Australia (Site AU-Lox, 34.4707◦ S and
140.6551◦ E, DOI:10.18140/FLX/1440247) from 2012 to
2018. The ET data product was filtered using the high-
est quality assurance flags (e.g., when there are no clouds
present) which narrows down the number of days in which
reflectance data were utilized. For this site we would ex-
pect the pattern in ET to be periodic due to the seasonal-
ity in leaf-on and leaf-off at this site. Visual inspection of
the data (Figure 5) does not seem to indicate a long-term
increasing or decreasing trend in the data, in contrast
to Total Net C uptake (Figure 1). We will refer to this
dataset as “ET”. Figure 5 includes the ET data used in
this study.

2.1.4 Synthetic Data

Finally, we formulated a synthetic dataset spanning ten
years with an annual period. This annual cycle was com-
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posed of three piecewise linear functions with breakpoints
20% and 60% through the year; the slope on the first and
third segments was set to m = 5 (similar to the piecewise
linear function in Figure 2). Superimposed on this annual
cycle was a long-term trend as decreasing linear function.
Finally the output (y) values were randomly perturbed
with normally distributed random noise with mean zero
and standard deviation 0.1. We will refer to this dataset
as “Synthetic”. Figure 6 includes the Synthetic data used
in this study.

2.2 Fitting procedure

The fitting procedure takes periodic data d⃗ = {ti, yi}
with period ρ to approximate the function y = F (t, α⃗),
where α⃗ is a vector of parameters determined by the fit-
ting routine. We assume that F includes both a periodic
component P (t, α⃗P ) and a baseline component B(t, α⃗B),
which will be a polynomial (function, so we assume that
F (t, α⃗) = B(t, α⃗B) + P (t, α⃗P ) and α⃗ is the union of α⃗B

and α⃗P . Unless specified otherwise, we applied ordinary
least squares linear regression for the fitting procedure.

The fitting procedure first removes the long-term
trend from the data by fitting the baseline component
B(t, α⃗B) and computing the residual between the data
and B(t, α⃗B). The residual data are used to parameter-
ize P (t, α⃗P ), which are assumed to be periodic. We then
define τ = t mod ρ be a scaled variable between zero and
unity. In this case we only need to parameterize the func-
tion for the scaled variable P (τ, α⃗P ). After parameteriz-
ing P (τ, α⃗P ), we then rescale P in terms of the variable
t. We consider three different models for P (τ, α⃗P ), as
described in the next three sections.

2.2.1 Trigonometric model

The function P (τ, α⃗P ) is approximated with trigonomet-
ric functions, so

P (τ, α⃗P ) = a0 + a1 sin(2πτ) + a2 cos(2πτ). (1)

Equation (1) is a standard model based on David and
Bliss [7]. The Trigonometric model has three parameters
(a0, a1, and a2) determined by our fitting procedure.

2.2.2 Polynomial model

The function P (τ, α⃗P ) is approximated by a polynomial
function so

P (τ, β⃗) =

n∑
i=0

βiτ
i · (1− τ)n−i

with n ≥ 1. We write the function in this way to ensure
periodicity at τ = 0 and τ = 1.

In order to ensure this polynomial function is con-
tinuous and differentiable on the interval 0 ≤ τ ≤ 1
we apply the constraints P (0, β⃗) = P (1, β⃗) = c and

P ′(0, β⃗) = P ′(1, β⃗) = m. These constraints determine
conditions on the parameters βi for any degree polyno-
mial:

P (0, β⃗) = β0 = c,

P (1, β⃗) = βn = c,

P ′(0, β⃗) = −nβ0 + β1 = m,

P ′(1, β⃗) = −βn−1 + nβn = m.

A cubic polynomial is the minimum degree polynomial
for P (τ, α⃗P ) that satisfies these constraints, but in this in-
stance P (τ, α⃗P ) is symmetric about τ = 0.5, which might
limit the applicability of this method. As a result, we fix
n = 4 for this study; after simplification we have

P (τ, α⃗P ) = mτ(1− τ)(1− 2τ)

+ c(1− 6τ2 + 12τ3 − 6τ4)

+ β2τ
2(1− τ2). (2)

Consequently, even though the Polynomial model is a
quartic (degree 4) model, it also has three parameters (m,
c, and β2) determined by our fitting procedure.

2.2.3 Piecewise Linear model

A third model we consider for P (τ, α⃗P ) is a piecewise
linear function. We still assume continuity conditions as
with the Polynomial model:

P (τ, α⃗P ) =



mτ + c 0 ≤ τ < b1

m
(

b2−b1−1
b2−b1

)
(τ − b1)

+mb1 + c b1 ≤ τ < b2

m (τ − 1) + c b2 ≤ τ ≤ 1

(3)

In Equation (3) the parameters b1 and b2 are considered
the breakpoints where P (τ) changes slope. We first de-
termine the location of these breakpoints with segmented
linear regression [27, 28, 30]. While algorithms for seg-
mented linear regression can determine breakpoints and
slopes on each segment, to ensure differentiability we need
the slope (m) to be equal on the first and third segments.
Also, to keep the number of parameters comparable to
the other two models, we only consider the case with
two breakpoints. More breakpoints can easily be con-
sidered for more other datasets. Once these breakpoints
are determined Equation (3) is linear with parameters m
and c. As a result, the Piecewise Linear model has four
parameters (m, c, b1, and b2) determined by our fitting
procedure.
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Figure 2: Representative plot of the Trigonometric
(Equation (1)), Polynomial (Equation (2)) and Piecewise
Linear (Equation (3)) models. Values of a1 = a2 = c = 1
and m = 5, b1 = 0.2, b2 = 0.6.

A representative plot for the different P (τ) models is
shown in Figure 2.

2.3 Software utilized

We utilized R [32], RStudio [34], and the tidyverse (Wick-
ham et al. [40]; http://tidyverse.tidyverse.org) for
data processing and analysis. Specific R packages in-
cluded tidyverse for data processing and visualization.
Breakpoints b1 and b2 in Equation (3) were determined
with the segmented package [28]. All the code used
to generate results and figures can be found at https:

//github.com/jmzobitz/periodicFitting.

2.4 Model evaluation approaches

We will evaluate our model results by how well the differ-
ent models (Trigonometric, Periodic, and Piecewise Lin-
ear) reproduce the periodic data, taking into consider-
ation the baseline function used for the fit. For model
evaluation we computed summary statistics (such as R2

values) and Akaike’s Information Criterion (denoted as
AIC, Akaike [1]) to select the best approximating fitted
model for each dataset. The R2 is interpreted as the pro-
portion of the measured residual variance accounted for
by the model; R2 values close to unity suggests the mod-
eled variance closely approximates the measured variance.
The AIC is computed as AIC= 2p − 2 ln(L), where p is
the number of parameters fit to the data and L the model
likelihood (in this case it is the modeled variance).

Because our measurements (and model fits) vary in
time periodically, a second model comparison examines
the differences in the variability in the pattern of mod-
eled to measured data. This is called the normalized cen-
tered root mean square difference, denoted here as σn [38].
The value of σn is the standard deviation of the difference
between two residuals: the measurements and the fitted
values. The residual for both is the difference between
an individual value and the overall mean (in this case the
measurements or the fitted values).

Beyond summary statistics we also compared which
of the three approaches (Trigonometric, Polynomial,
or Piecewise Linear) better approximated the periodic
trends as data become more sparse. First, we fixed the
baseline function B(t) with the lowest AIC in Table 1.
We also investigated the effect of the fitting procedure
(Trigonometric, Polynomial, and Piecewise Linear) when
the number of measurements in a dataset decreases. For
each dataset we randomly sampled a percentage of the
original data and then re-applied our fitting procedures.
This process was repeated 500 times and the ensemble
average was computed to create a distribution of the AIC
(for each fit) as a function of the proportion of data re-
moved.

3 Results

We computed a Trigonometric, Polynomial, and Piece-
wise Linear fit for each of the datasets in Section 2.1
using baseline models ranging from a constant function
to a fourth degree polynomial. Each dataset was fit-
ted twelve different ways (four baseline functions each
for the Trigonometric, Polynomial, and Piecewise Linear
fits) and summary statistics were computed.

Figures 3–6 show the results of applying the fitting pro-
cedures described in Section 2.2. Overall the fitting pro-
cedure (Trigonometric, Polynomial, or Piecewise Linear)
was able to visually reproduce the trends in the given
timeseries. In most cases (with the exception of Fig-
ure 5) non-constant polynomial functions for B(t) pro-
duced a better visual representation for the data. The
detrended timeseries for the Piecewise Linear model fit
had c = 1.1, m = 4.7, b1 = 0.21, and b2 = 0.59. The
fitted values were close to the original values of c = 1.0,
m = 5, b1 = 0.2, b2 = 0.6 (Figure 2). As expected for the
Synthetic dataset, the Piecewise Linear model had the
best model-data fit (lowest σn, Table 1), although the
Trigonometric and Polynomial models performed compa-
rably well (Figure 6).

Table 1 reports summary statistics (R2, AIC, and σn)
for each model. For instances where the AIC is equal for a
dataset (e.g., the Total Net C Uptake data) we chose the
lower degree of B(t). In contrast to the other datasets,
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Figure 3: Model results for Total Net C Uptake using dif-
ferent baseline functions B(t) (colored lines) along with
measured values (black dots) by applying the fitting rou-
tine described in Section 2.2. We omitted baseline fits
beyond quadratic functions due to the high similarity in
results.

Figure 4: Model results for Mauna Loa CO2 data using
different baseline functions B(t) (colored lines) along with
measured values (black dots) by applying the fitting rou-
tine described in Section 2.2. We omitted baseline fits
beyond quadratic functions due to the high similarity in
results.
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Figure 5: Model results for ET using different baseline
functions B(t) (colored lines) along with measured values
(black dots) by applying the fitting routine described in
Section 2.2. We omitted baseline fits beyond quadratic
functions due to the high similarity in results.

Figure 6: Model results for the Synthetic dataset using
different baseline functions B(t) (colored lines) along with
measured values (black dots) by applying the fitting rou-
tine described in Section 2.2. We omitted baseline fits
beyond quadratic functions due to the high similarity in
results.
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the AIC values for the Synthetic dataset were negative.
This is because the likelihood L is very large, which in
turn made the AIC (computed as 2p− 2 ln(L)) a positive
value.

The Total Net C Uptake and CO2 datasets exhibit a
strong periodic trend, so the R2 for non-constant poly-
nomials is already very high. For the Synthetic data, the
Piecewise Linear model had the lowest σn, which is to be
expected since this dataset was constructed from piece-
wise linear functions.

Figure 7 shows results when we re-evaluated each model
with sparse datasets. For the CO2 and Synthetic datasets
the same model was preferred (Piecewise Linear for CO2

data or Polynomial for Synthetic data) even as the gaps in
the dataset increased. For the Total Net Carbon Uptake
and ET datasets all methods performed comparatively
well, with perhaps more variation in the computed AIC
for the Piecewise Linear approach.

4 Discussion

This study presents alternative approaches to empirical
model fitting of periodic datasets with polynomial func-
tions or piecewise linear functions using differentiabil-
ity and continuity constraints. On the whole, these ap-
proaches performed as well as fitting with trigonometric
functions (Figures 3–6), with several cases of the fitted
functions being indistinguishable from each other. The
values in Table 1 show increasing the degree of the base-
line function B(t) does not significantly improve the over-
all data fit, with the AIC preferring a lower degree poly-
nomial for B(t). The baseline function B(t) selected did
not depend on the approach utilized.

The fits (Trigonometric, Polynomial, or Piecewise Lin-
ear) from the ET dataset, comparatively speaking, pro-
duced worse model fits compared to the other datasets.
We attribute this difference to the high variability in this
dataset, both shown in Figure 5 and with the largest
value of σn in Table 1, which reports the normalized
center root mean square difference for the fit with the
lowest AIC for each fitting approach. One way to re-
duce the residual variance for the Trigonometric model
is by including higher order terms in Equation 1 (e.g.,
sin(mπτ), cos(mπτ), where m is an integer). An anal-
ogous approach to the Periodic model would be to in-
crease the degree of the polynomial n. Future work could
investigate the reduction in the residual variance as ad-
ditional terms are added for noisy datasets such as ET .
We would not expect additional terms in the Trigonomet-
ric or Polynomial models to significantly improve results
for datasets such as Total Net C Uptake or CO2 because
there already is a high representation of the fitted values
to the measurements.

Figure 7: Ensemble median value of AIC values for the
different fitting procedures by dataset with a proportion
of data randomly removed before fitting. For each fitting
procedure and data the baseline function B(t) with the
lowest AIC in Table 1 was utilized.
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Table 1: Model summary results (including the R2 and AIC (Akaike Information Criterion) organized by equation
used to estimate the periodic component (either trigonometric, Equation (1); polynomial, Equation (2); or piecewise
linear (3). For each fitting approach the degree of B(t) that has the highest R2 (blue color) or lowest AIC (red color)
is highlighted. (In the case of ties the lowest degree for B(t) is selected.) The last column σn reports normalized
center root mean square difference for the fit with the lowest AIC (red cell in each row).

Statistic R2 AIC σn

B(t) degree → 0 1 2 3 4 0 1 2 3 4
P (t) function ↓

Total Net C Uptake

Trigonometric 0.01 1 1 1 1 94073.54 59864.8 59693.55 59695.55 59697.55 0.05
Polynomial 0.01 1 1 1 1 94070.42 60179.69 60017.71 60019.71 60021.71 0.05

Piecewise Linear 0.01 1 1 1 1 94079.5 59736.08 59560.84 59562.84 59564.84 0.05

CO2

Trigonometric 0 0.98 1 1 1 6840.63 3905.42 1975.47 1974.59 1976.59 0.03
Polynomial 0 0.98 1 1 1 6840.88 3923.46 2198.16 2198.15 2200.15 0.04

Piecewise Linear 0 0.98 1 1 1 6842.38 3893.1 1745.13 1743.46 1745.46 0.03

ET

Trigonometric 0.56 0.56 0.57 0.57 0.57 692.83 695.68 695.5 697.5 699.5 0.66
Polynomial 0.55 0.55 0.55 0.55 0.55 707.14 709.96 710.08 712.08 714.08 0.67

Piecewise Linear 0.48 0.49 0.49 0.49 0.49 790 781.85 782.51 784.51 786.51 0.72

Synthetic

Trigonometric 0.94 0.93 0.93 0.93 0.93 −51.13 −32.6 −30.09 −28.09 −26.09 0.26
Polynomial 0.89 0.89 0.89 0.89 0.89 97.35 110.48 112.81 114.81 116.81 0.33

Piecewise Linear 0.98 0.98 0.98 0.98 0.98 −395.67 −345.23 −342.35 −340.35 −338.35 0.15

The Polynomial approach can be generalized further
by requiring additional constraints beyond continuity and
differentiability. Just like higher-order harmonic terms
can be added with the Trigonometric fitting approach,
more general, higher-degree polynomials could be con-
ceivably used in the Polynomial approach. One would
then have to be careful to choose a model that doesn’t
introduce unwanted spurious oscillations within each pe-
riod. For example, one idea is to use τ(1−τ)k−τk(1−τ)
in place of τ(1− τ)2 − τ2(1− τ) = τ(1− τ)(1− 2τ). This
has a nice effect of spreading the max/min farther apart,
which may be desirable for some datasets. In this case
k needs to be a hyperparameter that is selected ahead of
time. Similarly, the Piecewise Linear model could be ex-
tended for datasets with a unique maximum and a unique
minimum in each period of the detrended data by us-
ing higher-degree polynomials on each interval where the
data is approximately monotonic. Future work could ex-
tend this approach to integrate with other curve fitting
approaches (e.g., non-parametric estimation, Hall et al.
[12]; timeseries analysis, Kovács et al. [20], Wu et al.
[42]). Additionally, to ensure P (τ) has biologically rea-
sonable solutions, additional constraints could incorpo-
rate constraints on the parameters β2 and m into the
fitting routine.

The Piecewise Linear model assumes equal slopes for
the intervals 0 ≤ τ ≤ b1 and b2 ≤ τ ≤ 1 to ensure
P (τ) is differentiable at τ = 1. In segmented regression
analysis, slopes on different intervals are not assumed to
be equal [27, 29, 30]. While Equation (3) is nonlinear
with respect to parameters b1, b2, m, and c, for computa-
tional simplicity we decided to determine the breakpoints
first and then apply linear regression with indicator vari-
ables to determine m and c. We believe this approach is
more comparable to the Trigonometric and Periodic ap-
proaches. Future investigations could contrast a nonlin-
ear optimization method to the approach outlined here.

Figure 7 shows that no model seemed to suddenly
outperform the others as data gaps increase. The AIC
changes in Figure 7 because the log-likelihood is chang-
ing (the number of parameters p is fixed because the base-
line polynomial B(t) is fixed). As a result, increases in
the AIC are associated with a decreasing log-likelihood
(suggesting a better model-data fit for the measurements;
CO2, Total Net C Uptake, ET datasets). In contrast, for
the Synthetic dataset the log-likelihood increased as the
data became less sparse, causing the AIC to decrease.
The log-likelihood in our case is essentially the residual
sum of squares, so removing data will decrease the model-
data residual. The Synthetic data already exhibit a high
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degree of periodicity (Figure 6), so randomly thinning the
dataset would remove more outliers than compared to the
other datasets.

With any dataset invariably measurement gaps can
occur—either due to sampling frequency or intermittent
instrument outages. Measurements of the carbon uptake
(Figure 1) can have gaps as high as 35% of the mea-
surement period [3, 4]. When this occurs, gap-filling
techniques (such as [33]) are one way to generate ap-
proximately correct values consistent with expected pat-
terns. Through thinning of the dataset, the Polynomial
approach presented here performed as good or better than
trigonometric functions (Figure 7), and the constraints
described could be generalized further depending on in-
dividual knowledge of the system at hand.

Further investigation could examine the length of the
interval b1 ≤ τ ≤ b2 (where b1 and b2 could be the opti-
mum values on the periodic interval or the breakpoints)
and its influence on the choice of a particular fitting ap-
proach (Trigonometric, Polynomial, or Piecewise Linear).
Apart from the Piecewise Linear approach, as a rule of
thumb we found that the Trigonometric approach works
better if the difference b2 − b1 ≈ 0.5, and the Polyno-
mial approximation works better when b2 − b1 is greater
than 0.5. When b2 − b1 is less than 0.5 no approach was
better than the other. Additional numerical simulation
with synthetic data (such as what we did with the AIC
in Figure 7) could establish baseline metrics for each of
the fitting procedures.
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