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Abstract For polynomials some of whose zeros are complex, little is known about
the overall convergence properties of Laguerre’s function. This chapter provides
an outline of this function viewed as a dynamic system which is often studied
by many researchers and includes some of the latest research made by the authors.
Moreover, the existence of its free critical points as applied to one-parameter families
of quadratic and cubic polynomials is examined.With the help of computer-generated
plots, we investigate the basins of attraction of the zeros in the special case wherein
this function is constructed to converge to the 𝑛th roots of unity. Furthermore, we
examine the effect and the impact of perturbing the symmetry of these roots on their
basins of attraction.
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1 Introduction

Laguerre iteration function is by far the most straightforward iterative method for
finding roots of polynomials all of whose zeros are real and simple. If all the zeros
are real but some are not simple, the method still converges but the convergence is of
first order in the neighborhood of a multiple zero. For polynomials with real roots,
the real line is divided into as many abutting intervals as there are distinct roots and

Pavel Bělík
Mathematics, Statistics & Computer Science Department, Augsburg University, 2211 Riverside
Avenue, Minneapolis, MN 55454, USA, e-mail: belik@augsburg.edu

Vasileios Drakopoulos
Department of Computer Science and Biomedical Informatics, University of Thessaly, 2–4 Papa-
siopoulou St., 35131, Lamia, Greece, e-mail: vdrakop@uth.gr
∗ Corresponding author

1



2 Pavel Bělík and Vasileios Drakopoulos

from any initial point in such an interval the successive Laguerre iterates converge
monotonically to the root therein; see [20] and the references therein.
In this work we are interested in Laguerre iterations on the complex plane. The

previous property does not generally extend to the complex case as it stands, i.e.,
generally the complex plane is not covered by abutting regions such that from an
initial value in a region successive iterates converge to the zero contained therein.
Some steps in the derivation of Laguerre’s method for approximating the roots of

a polynomial equation that are normally omitted from the few texts that discuss the
method is described in [26]. A one-parameter family of iteration functions for finding
roots is derived in [14]. Recent applications of some old work of Laguerre can be
found in [13]. A generalization of Laguerre’s method to higher-order methods that
have the same desirable global convergence properties that Laguerre’s method does
for polynomials with real zeros is presented in [12]. The article [19] has been written
to explain its properties in an elementary fashion. The article [11] supplements the
theoretical background of the quasi-Laguerre iteration by including the proofs of the
convergence properties. An attempt to bring Laguerre’s method to the high level of
robustness and effectiveness as the Cluster-Adapted Method package can be found
in [5].
A substantiation of a new Laguerre’s type iterative method for solving of systems

of nonlinear polynomial equations with real coefficients is presented in [22]. The
problems of its implementation, including relating to the structural choice of initial
approximations, were also considered. A family of Laguerre methods of order three
as well as two others of the same order is compared in [18]. The conjugacy maps
and the effect of the extraneous roots on the basins of attraction is also discussed.
Symmetry properties of the Laguerre iteration function are studied in [2] and the
dynamics of the method is also clarified there. A one-parameter Laguerre’s family
of iterative methods for solving nonlinear equations is considered in [21]. In that
article the authors compare convergence characteristics of Laguerre’s family of
iterative methods 𝐿 (𝑥;_) for various values of the real parameter _ using three
different methodologies. An implementation of a modified Laguerre method for the
simultaneous approximation of all roots of a polynomial is presented in [3]. Other
applications can be found in [7].
As far as the dynamics of the Laguerre function in the complex plane is concerned,

we demonstrate the non-existence of critical points which may be trapped by an
iteration sequence associated with one-parameter families of quadratic and cubic
polynomials in Section 5. Moreover, a brief examination of a one-parameter family
of cubic polynomials is included. In Section 6 we examine, with the aid of computer-
generated plots, the basins of attraction of this method constructed to converge to the
𝑛th roots of unity and, subsequently, the associated Julia sets. In the specific case of
two roots, the roots’ basins of attraction are separated by the right bisector of the line
joining the two roots, which is the same scenario as the classical result of Cayley’s
for Newton’s method [4]. In the case of three roots, the roots’ basins of attraction are
the connected regions separated by the lines bisecting the edges of the triangle with
the roots as vertices. A similar result is also valid in the case of four roots. In both of
these cases, Laguerre’s method converges globally, including from the boundaries
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of the individual basins, except when the starting value is 𝑧0 = 0. For 𝑛 ≥ 5, the
dynamics of the Laguerre function is much more complicated and the boundary of
the union of the roots’ basins of attraction is fractal. Finally, in Section 7 we explore
the effect the symmetry of the roots of these polynomials might be playing in the
poor performance of Laguerre’s method and observe that a small perturbation may
result in a bifurcation leading to an overall excellent performance.

2 Laguerre’s Iterative Method

Section 9.5 of [23] claims that Laguerre’s method, used for finding zeros of a polyno-
mial, gives strong convergence right from any starting value. According to Ralston
and Rabinowitz [24], however, this is only true if all the roots of the polynomial
are real. For example, Laguerre’s method runs into difficulty for the polynomial
𝑓 (𝑥) = 𝑥𝑛 + 1 with 𝑛 > 2 if the initial guess is 0, because 𝑓 ′(0) = 𝑓 ′′(0) = 0. The
method can be extended to the complex plane as follows, but refer also to [20].
Let 𝑓 be analytic in some region 𝑇 , let 𝑤 ∈ 𝑇 be a zero of 𝑓 and let 𝑓 ′(𝑤) ≠ 0.

Let a be a real number, a ≠ 0, 1. Then, there exists a neighborhood 𝐷 of 𝑤 such that���� a

a − 1
𝑓 (𝑧) 𝑓 ′′(𝑧)
𝑓 ′(𝑧)2

���� < 1, 𝑧 ∈ 𝐷.

Consequently the square root

𝑟 (𝑧) =
[
1 − a

a − 1
𝑓 (𝑧) 𝑓 ′′(𝑧)
𝑓 ′(𝑧)2

]1/2
is analytic in 𝐷 and can be defined by its principal value; furthermore

𝑟 (𝑧) = 1 − a

2(a − 1)
𝑓 (𝑧) 𝑓 ′′(𝑧)
𝑓 ′(𝑧)2

+ O((𝑧 − 𝑤)2).

For 𝑧 ∈ 𝐷 we define

𝐿 (𝑧) = 𝑧 − 𝑓 (𝑧)
𝑓 ′(𝑧)

a

1 + (a − 1)𝑟 (𝑧) (1)

and assert the following.

Theorem 1 For every a ≠ 0, 1 the function 𝐿 defined by (1) is an iteration function
of order 3 for solving 𝑓 (𝑧) = 0.

Proof See [15], p. 532. □

This means that, in the neighborhood of a simple root of 𝑓 , iteration of 𝐿 converges
at least cubically.
The Laguerre iteration function 𝐿 (𝑧) is defined as (see [15])
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𝐿 (𝑧) = 𝑧 − a 𝑓 (𝑧)
𝑓 ′(𝑧) +

[
(a − 1)2 𝑓 ′(𝑧)2 − a(a − 1) 𝑓 (𝑧) 𝑓 ′′(𝑧)

]1/2 , (2)

where the argument of the root is to be chosen to differ by at most 𝜋/2 from the
argument of 𝑓 ′(𝑧), or equivalently, to maximize the modulus of the denominator
in (2). When both choices satisfy this criterion, a choice is typically made at the
algorithmic level. The iteration function (2) can also be rewritten in an equivalent
form as

𝐿 (𝑧) = 𝑧 − a 𝑓 (𝑧)/ 𝑓 ′(𝑧)
1 +

[
(a − 1)2 − a(a − 1) 𝑓 (𝑧) 𝑓 ′′(𝑧)/ 𝑓 ′(𝑧)2

]1/2 . (3)

We observe that 𝐿 (𝑧) = ∞ if and only if 𝑓 ′(𝑧) = 𝑓 ′′(𝑧) = 0 and 𝑓 (𝑧) ≠ 0. For a = 3
the iteration (3) becomes

𝐿 (𝑧) = 𝑧 − 2 𝑓 (𝑧)/ 𝑓 ′(𝑧)
1 +

[
1 − 2 𝑓 (𝑧) 𝑓 ′′(𝑧)/ 𝑓 ′(𝑧)2

]1/2 . (4)

From this formula we may derive more simple ones by introducing approximations.
For example, if in (4) we introduce the approximation√︄

1 − 2 𝑓 (𝑧) 𝑓
′′(𝑧)

𝑓 ′(𝑧)2
≈ 1 − 𝑓 (𝑧) 𝑓 ′′(𝑧)

𝑓 ′(𝑧)2
,

we obtain the formula

𝐻 (𝑧) = 𝑧 − 𝑓 (𝑧)/ 𝑓 ′(𝑧)
1 − 𝑓 (𝑧) 𝑓 ′′(𝑧)/

[
2 𝑓 ′(𝑧)2

]
which is also of third order, but which does not require a square-root computation.
This is the frequently rediscovered formula of Halley. Iterative approximation based
on this formula is also sometimes called Bailey’s method or Lambert’s method.
This formula belongs to a more general class of iterative functions called König’s
functions and is specifically 𝐾3 (𝑧). We refer the interested reader to [1] or [8].
If we write [

1 − 𝑓 (𝑧) 𝑓 ′′(𝑧)
2 𝑓 ′(𝑧)2

]−1
≈ 1 + 𝑓 (𝑧) 𝑓 ′′(𝑧)

2 𝑓 ′(𝑧)2

in Halley’s formula, we obtain the iteration

𝐶 (𝑧) = 𝑧 − 𝑓 (𝑧)
𝑓 ′(𝑧)

[
1 + 𝑓 (𝑧) 𝑓 ′′(𝑧)

2 𝑓 ′(𝑧)2

]
.

This is also a third-order iteration sometimes called Chebyshev’s formula. For more
details on this subject see [16]. This formula also belongs to a more general class
of iterative functions called Schröder’s functions and is specifically 𝑆3 (𝑧) (see for
example [10]).
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The Laguerre iteration function phenomenologically offers no advantages over
Schröder’s 𝑆3, which is also somewhat easier to compute. From a practical point of
view, however, the presence of the square root has the desirable effect that if 𝑓 is a
real polynomial the iteration automatically branches out into the complex plane if no
real roots are found. Moreover, if 𝑓 is a real polynomial of degree 𝑛 ≥ 2, the choice
a = 𝑛 furnishes remarkable inclusion theorems for the real zeros, such as
Theorem 2 Let 𝑓 be a polynomial of degree 𝑛 and let 𝐿 be the Laguerre iteration
function formed with a = 𝑛. Then for each complex number 𝑧 there is a zero 𝑤 of 𝑓
such that |𝑤 − 𝑧 | ≤

√
𝑛 |𝐿 (𝑧) − 𝑧 |.

Proof See [17]. □

3 Laguerre Iteration Function Revisited

None of the derivations of (2) or (3) is easy to motivate. One typical derivation is as
follows. If 𝑓 (𝑧) = (𝑧 − 𝜌1) (𝑧 − 𝜌2) · · · (𝑧 − 𝜌𝑛), then

𝐹 (𝑧) = 𝑓 ′(𝑧)
𝑓 (𝑧) =

1
𝑧 − 𝜌1

+ 1
𝑧 − 𝜌2

+ · · · + 1
𝑧 − 𝜌𝑛

=
𝑑

𝑑𝑧
ln | 𝑓 (𝑧) |

and

𝐺 (𝑧) = 𝐹 (𝑧)2 − 𝑓 ′′(𝑧)
𝑓 (𝑧) =

1
(𝑧 − 𝜌1)2

+ 1
(𝑧 − 𝜌2)2

+ · · · + 1
(𝑧 − 𝜌𝑛)2

= − 𝑑2

𝑑𝑧2
ln | 𝑓 (𝑧) |.

Then, for 𝑧 near a simple root 𝜌, the other roots are “far away” and so 𝑓 (𝑧) ≈
(𝑧 − 𝜌) (𝑧 − b)𝑛−1 for some b. Thus

𝐹 (𝑧) ≈ 1
𝑧 − 𝜌 + 𝑛 − 1

𝑧 − b 𝐺 (𝑧) ≈ 1
(𝑧 − 𝜌)2

+ 𝑛 − 1
(𝑧 − b)2

.

Assuming the approximations are exact yields a solution

𝑧 − 𝜌 =
𝑛

𝐹 (𝑧) ±
√︃
(𝑛 − 1)

[
𝑛𝐺 (𝑧) − 𝐹 (𝑧)2

] ,
which, with the sign chosen to maximize the modulus of the denominator, leads
immediately to (2). So, if

Λ(𝑧) = 𝐹 (𝑧) + 𝛿(𝑧)
√
a − 1

a
,

where 𝛿(𝑧) = ±
√︁
a𝐺 (𝑧) − 𝐹 (𝑧)2 with the sign of chosen to maximize |Λ|, then (2)

becomes
𝐿 (𝑧) = 𝑧 − 1

Λ(𝑧) .
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4 Dynamic Systems Approach

In what follows, we abbreviate as 𝑓 𝑘 the 𝑘-fold composition 𝑓 ◦ 𝑓 ◦ · · · ◦ 𝑓 and by
region we mean a connected open set on the extended complex plane C = C ∪ {∞}.
It appears that, for cases of practical interest, convergence of the sequence of iterates
𝑧0, 𝑓 (𝑧0), 𝑓 2 (𝑧0) . . . is assured for every choice of starting point 𝑧0 in the complex
plane, except when 𝑧0 is a point of the Julia set 𝐽 ( 𝑓 ). How “close” a starting point
must be to the desired root depends on certain convergence conditions and how “fast”
the method converges depends on the order of convergence of our iterative method.
It may happen, however, that when choosing a starting point 𝑧0 in a certain

domain, convergence takes place not to a zero of our polynomial, but to a periodic
orbit or cycle, that is a set of 𝑝 ≥ 2 distinct points {𝑎1, . . . , 𝑎𝑝} such that

𝑓 (𝑎1) = 𝑎2, . . . , 𝑓 (𝑎𝑝−1) = 𝑎𝑝 , 𝑓 (𝑎𝑝) = 𝑎1,

so that, in fact, for each 𝑘 = 1, 2, . . . , 𝑝, 𝑧 = 𝑎𝑘 is a solution of 𝑓 𝑝 (𝑧) = 𝑧. If 𝑝 = 1,
𝑧 is called a fixed point of 𝑓 . Hence, a point 𝑎 is periodic if 𝑓 𝑝 (𝑎) = 𝑎 for some
𝑝 > 0; it is repelling, indifferent or attracting depending on whether | ( 𝑓 𝑝) ′(𝑎) | is
greater than, equal to, or less than one.
If 𝑎 is an attracting fixed point of 𝑓 , then

𝐴(𝑎) = {𝑧 ∈ C : lim
𝑘→∞

𝑓 𝑘 (𝑧) = 𝑎}

is the basin of attraction of 𝑎. If a basin of attraction is not connected, we often
wish to consider the immediate basin of attraction 𝐴∗ (𝑎) of 𝑎, namely the connected
component of 𝐴(𝑎) which contains 𝑎 itself. For our purposeswewill need to consider
the union of the basins of attraction of all fixed points of 𝑓 ; its boundary is the Julia
set 𝐽 ( 𝑓 ) of the function 𝑓 .
It is well known that the dynamics of polynomials and rational maps is determined

to a large extent by the fate of the orbits of critical values.Critical values of a function
𝑓 are defined as those values 𝑣 ∈ C for which 𝑓 (𝑧) = 𝑣 has a multiple root. The
multiple root 𝑧 = 𝑐 is called the critical point of 𝑓 . This is equivalent to the condition
𝑓 ′(𝑐) = 0. In some cases, such as in 𝐸_ (𝑧) = _𝑒𝑧 , _ ∈ R that has no critical points,
the role of the critical value is played by the asymptotic value 0, which is an omitted
value for 𝐸_. In this article we intend to exclude the case in which some critical point
will converge to an attracting cycle, should such a cycle exist.
Among the critical points of the Laguerre function 𝐿, determined by the condition

𝐿 ′(𝑧) = 0, are the zeros 𝑧∗
𝑖
of 𝑓 , which are also attracting fixed points of 𝐿. These

points are obviously not free to converge to any other attracting cycles. In the next
section we seek the existence of other roots of 𝐿 ′, which we shall call the free critical
points.
Following the notation of this section, the condition 𝐿 ′(𝑧) = 0 implies that

Λ(𝑧)2 + Λ′(𝑧) = 0,
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which yields

3(a − 1) (a − 2)2 𝑓 ′(𝑧)2 𝑓 ′′(𝑧)2 − 4(a − 1)2 (a − 2) 𝑓 ′(𝑧)3 𝑓 ′′′(𝑧)
− 4a(a − 2)2 𝑓 (𝑧) 𝑓 ′′(𝑧)3 + 6a(a − 1) (a − 2) 𝑓 (𝑧) 𝑓 ′(𝑧) 𝑓 ′′(𝑧) 𝑓 ′′′(𝑧) (5)

− a2 (a − 1) 𝑓 (𝑧)2 𝑓 ′′′(𝑧)2 = 0.

We will use this equation in Section 5 below, where we study the behavior of
Laguerre’s iteration for some specific polynomials.
The following statement is often found in the literature but never rigorously proved

because no such proof exists: “The Laguerre iteration function remains invariant
under every Möbius transformation.” We next present a counterexample to this
statement and a weaker, but correct statement, both due to Ray [25].
Consider the polynomial 𝑝 and a Möbius transformation 𝑇 given by

𝑝(𝑧) = (𝑧 − 1) (𝑧 − 2) (𝑧 + 3), 𝑇 (𝑧) = 𝑧

2𝑧 − 3 .

We then have 𝑝(0) = 6, 𝑝′(0) = −7, 𝑝′′(0) = 0 and denoting the Laguerre iteration
function (2) with a = deg 𝑝 = 3 for 𝑝 by 𝐿𝑝 we have

𝐿𝑝 (0) =
6
7
.

Since 𝑇 (1) = −1, 𝑇 (2) = 2, and 𝑇 (−3) = 1/3, the transformed polynomial and the
transformed starting value 𝑧 = 0 are

𝑔(𝑧) = (𝑧 + 1) (𝑧 − 2) (𝑧 − 1/3), 𝑇 (0) = 0.

We then have 𝑔(0) = 2/3, 𝑔′(0) = −5/3, 𝑔′′(0) = −8/3, and

𝐿𝑔 (𝑇 (0)) = 𝐿𝑔 (0) =
6
19

≠ 𝑇

(
6
7

)
= −2
3
.

Therefore the statement above is not correct.
The reason why the invariance is not correct in general is the particular choice of

the argument in the square root of (2). Ray [25] shows that the invariance is true for
affinemaps𝑇 (𝑧) = 𝑎𝑧+𝑏 or, for example, if the choice of the sign of the square root is
irrelevant, i.e., for those values of 𝑧 for which (𝑛−1)2 𝑓 ′(𝑧)2−𝑛(𝑛−1) 𝑓 (𝑧) 𝑓 ′′(𝑧) = 0.

5 Parameter space

We now focus attention on the Laguerre iteration method associated with the
quadratic family

𝑝𝑐 (𝑧) = 𝑧2 − 𝑐, 𝑐 ∈ C,
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and with the particular one-parameter family of cubic polynomials,

𝑝_ (𝑧) = 𝑧3 + (_ − 1)𝑧 − _ = (𝑧 − 1) (𝑧2 + 𝑧 + _), _ ∈ C

the zeros of which are 𝑧∗1 = 1, 𝑧
∗
2 = (−1 +

√
1 − 4_)/2 and 𝑧∗3 = (−1 −

√
1 − 4_)/2.

Note the _-dependence of 𝑧∗2 and 𝑧
∗
3. The polynomials 𝑝_ are exactly the monic

cubics whose roots sum to zero and which have 1 as a root. Since any quadratic
can be transformed into a 𝑝𝑐 and any cubic can be transformed into a 𝑝_ or into 𝑧3
by an affine change of the variable and multiplication by a constant, thus analysing
Laguerre’s method for a general quadratic or cubic reduces essentially to analyzing
it for the 𝑝𝑐’s or 𝑝_’s, respectively.
One main question is, are there any regions in the parameter spaces where at-

tracting periodic cycles exist in addition to the (attracting) fixed points associated
with the zeros of 𝑝𝑐 or 𝑝_? To detect the existence of attracting cycles which could
interfere with the Laguerre search for the roots 𝑧∗

𝑖
we examine the existence of the

free critical points of the 𝐿 function.
From (5) and setting a = deg 𝑝𝑐 = 2, the free critical points (should there be any)

for the 𝐿 function associated with 𝑝𝑐 can be derived from

𝑝𝑐 (𝑧)2𝑝′′′𝑐 (𝑧)2 = 0, (6)

which holds for every 𝑧 ∈ C. Also, it is straightforward to check by direct substitution
of 𝑝𝑐 into 𝐿 that with a = 2 and 𝑐 ≠ 0 the iteration converges to one of the two roots
in one step from any initial value in the complex plane. When 𝑐 = 0, the same is true
for any nonzero initial value.
From (5) the free critical points for the 𝐿 function associated with 𝑝_ can be

derived from

6(𝑛 − 3)2 (𝑛 − 4)𝑧6 − 6(𝑛 − 3)2 (𝑛 + 2) (_ − 1)𝑧4 + 12𝑛(𝑛 − 3) (2𝑛 − 5)_𝑧3

+ 6𝑛(𝑛 − 1) (𝑛 − 3) (_ − 1)2𝑧2 − 12𝑛(𝑛 − 1) (𝑛 − 3)_(_ − 1)𝑧
− 2(𝑛 − 1)2 (𝑛 − 2) (_ − 1)3 − 3𝑛2 (𝑛 − 1)_2 = 0.

Setting 𝑛 = deg 𝑝_ = 3 in the above equation we deduce that for two values of _,
specifically for _ = −2 with multiplicity two and _ = 1/4, this also holds for every
𝑧 ∈ C, as in (6). We conclude that there aren’t any free critical points, something that
suggests that the dynamics of Laguerre’s method for all the complex quadratic and
cubic polynomials is unaffected by critical points.
A square grid corresponding to 200×200 pixels of a monitor represent a region in

the complex plane. After each iteration, the Euclidean distances between the iterate
𝑧𝑘 and the zeros 𝑧∗𝑖 of 𝑓𝑛 (𝑧) (or of 𝑝_ (𝑧)) were computed. If any of the distances were
less than 0.0001, it was assumed that the sequence would converge to that particular
root. If after 200 iterations no such convergence was observed, the routine would
skip to the next grid point. The basin of attraction 𝐴(𝑧∗

𝑖
) for each root of unity 𝑧∗

𝑖

would be assigned a characteristic color. For _ = −2, blue regions constitute 𝐴(1);
green regions constitute 𝐴(−2). For _ = 1/4, blue regions constitute 𝐴(1); green
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regions constitute 𝐴(−1/2). For _ = 𝑖, blue regions constitute 𝐴(1); green regions
constitute 𝐴(−0.5 + 0.5

√
1 − 4𝑖); red regions constitute 𝐴(−0.5 − 0.5

√
1 − 4𝑖). The

common boundaries of these basins of attraction constitute the points in Cwhere the
algorithmic decision discussed after (2) has to be made, and convergence to one of
the roots occurs depending on the choice.

-5  5

-5

5

-5  5

-5

5

-10 10

-10

10

(a) (b) (c)

Fig. 1 Basins of attraction for the roots of 𝑝_ (𝑧) = 𝑧3 + (_− 1)𝑧 − _ using Laguerre function. (a)
_ = −2, (b) _ = 1/4, (c) _ = 𝑖. [9]

6 Roots of Unity Under Laguerre’s Iteration with 𝝂 = 𝒏

We now examine in more detail the behavior of the Laguerre iteration function when
applied to find the 𝑛th roots of unity with 𝑛 ≥ 2. Additional details can be found in
[25, 2, 6]. Substituting 𝑓𝑛 (𝑧) = 𝑧𝑛 − 1 into the Laguerre iteration function (3) with
a = 𝑛, we can simplify the resulting expression to get

𝐿 (𝑧) = 𝑧
1√
𝑧𝑛

+ (𝑛 − 1)
√
𝑧𝑛 + (𝑛 − 1)

, (7)

where
√
𝑧 denotes the principal square root of 𝑧 ∈ C and where also 𝐿 (0) = 1 and

𝐿 (∞) = 0 for 𝑛 = 2, and 𝐿 (0) = ∞ and 𝐿 (∞) = 0 for 𝑛 ≥ 3.
We note that the roots of 𝑓𝑛 are exactly the fixed points of 𝐿, and it is easy to

check that the derivative of 𝐿 vanishes at the roots, so they are attracting fixed points,
and each has an open neighborhood contained in its immediate basin of attraction.
When 𝑛 = 2, which is a special case of the polynomial 𝑝𝑐 discussed in Section 5,
convergence occurs in one iteration for any starting point 𝑧0 ∈ C. If Re(𝑧0) > 0, or
if Re(𝑧0) = 0 and Im(𝑧0) ≥ 0, then 𝐿 (𝑧0) = 1; otherwise 𝐿 (𝑧0) = −1. When 𝑛 ≥ 3,
𝑧 = 0 is a repelling periodic point of period 2, because 𝐿 (0) = ∞ and 𝐿 (∞) = 0.
For any other starting point convergence to the roots of 𝑓𝑛 occurs for 𝑛 = 3 and
𝑛 = 4. The basins of attractions to the roots for 𝑛 = 2, 3, 4 are shown in Fig. 2 and
as indicated in the figure, the boundaries of the roots’ basins of attraction consist of
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the Voronoi diagram of the corresponding roots. Again, these boundaries are points
at which an algorithmic choice of the sign of the square root in (2) would be made.
With the iteration function (7) this choice is made by the machine’s implementation
of the principal square root.
The situation is much more interesting for 𝑛 ≥ 5. In this case, the {0,∞} two-

cycle becomes attracting and the Lebesgue measure of the roots’ basins of attraction
approaches 0 as 𝑛 → ∞. More specifically, these basins are subsets of an annulus
whose radii 𝑟1 and 𝑟2 satisfy 0 < 𝑟1 < 1 < 𝑟2 = 1/𝑟1 < (𝑛 − 1)2/(𝑛−4) , so both
radii converge to 1 as 𝑛 → ∞. In Fig. 3 the case with 𝑛 = 16 is shown with
the 16 roots shown as dots along the unit circle, and two grey annuli that vaguely
outline the boundary of the union of the basins of attraction of the roots: Laguerre
iteration converges to the roots for any starting point between the two grey annuli,
but it approaches the {0,∞} two-cycle for any starting point inside the smaller grey
annulus or outside the larger grey annulus. We illustrate the intricacies of the basins
of attraction to the roots in Fig. 4 in which the cases with 𝑛 = 5, 6, 7, and 8 are
shown. Note that all of these images are shown to display the entire union of the
basins of attraction scaled to fit into the viewing window, so the scale is different for
all of them.
The boundary of the union of the 𝑛 basins of attraction to the roots of 𝑓𝑛, or

the Julia set 𝐽 ( 𝑓𝑛), is contained in the grey annuli shown in Fig. 3. It turns out
that in general the union of the 𝑛 basins is neither connected nor simply connected
and the Julia set exhibits fractal and quasi-self-similar structure. These concepts are
illustrated in Fig. 5 in which zooms into two parts of the boundary are shown for 𝑓𝑛
with 𝑛 = 128. We note that more intricate structure develops as 𝑛 increases. (For an
additional example with 𝑛 = 1024 see [2].)
It is important to point out that if the Laguerre iteration function (2) is used

instead of its mathematical equivalent (7) to iterate on a computer with floating-
point arithmetic, the results will be different. The colors shown in Figs. 4 and 5
would remain unchanged, but where one currently sees white regions a mix of all
colors would appear giving the appearance of Laguerre’s method converging from

(a) (b) (c)

Fig. 2 Basins of attraction for the roots of 𝑓𝑛 (𝑧) = 𝑧𝑛 − 1 in the complex region [−1, 1] × [−1, 1]
using Laguerre function: (a) 𝑛 = 2, (b) 𝑛 = 3, (c) 𝑛 = 4. [10]
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Fig. 3 Depiction of various sets and curves relevant in the analysis of the Laguerre iteration
function for 𝑓𝑛 (𝑧) = 𝑧𝑛 − 1 with 𝑛 = 16. Convergence to roots occurs when starting between
the grey annuli; convergence to the {0,∞} two-cycle occurs when starting inside the smaller grey
annulus or outside the larger grey annulus; the boundary of the union of the basins of attraction is
in the grey region. [2]

any starting point in C. This is illustrated in Fig. 6. That is, in fact, what would take
place in the computer and the reason is loss of significance in the computation of
the expression (𝑛 − 1)2 𝑓 ′𝑛 (𝑧)2 − 𝑛(𝑛 − 1) 𝑓𝑛 (𝑧) 𝑓 ′′𝑛 (𝑧) in (2) when |𝑧 | is large. Note
that both terms in the difference have leading terms 𝑛2 (𝑛 − 1)2𝑧2𝑛−2, and the actual
difference should be equal to 𝑛2 (𝑛−1)2𝑧𝑛−2, several orders of magnitude smaller.We
therefore see that, for large |𝑧 |, significant errors will occur in the computation of the
square root in (2). When convergence to the two-cycle {0,∞} should theoretically
take place, eventually the large magnitude of the alternate iterates will result in
erroneous values from which convergence to roots occurs. We note that this loss
of significance is not unique to 𝑓𝑛 (𝑧) = 𝑧𝑛 − 1. For a general polynomial 𝑝(𝑧) of
degree 𝑛 the difference (𝑛 − 1)2𝑝′(𝑧)2 − 𝑛(𝑛 − 1)𝑝(𝑧)𝑝′′(𝑧) will have a leading
term of order 𝑧2𝑛−4 or smaller, while the leading terms of both (𝑛 − 1)2𝑝′(𝑧)2 and
𝑛(𝑛 − 1)𝑝(𝑧)𝑝′′(𝑧) are equal and of order 𝑧2𝑛−2. Perhaps this observation explains
the popular notion that Laguerre’s method seems to converge to a root from almost
any initial guess in C.
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(a) (b)

(c) (d)

Fig. 4 Numerically computed basins of attraction of Laguerre’s method applied to the polynomials
𝑓𝑛 (𝑧) = 𝑧𝑛 − 1 with 𝑛 = 5, 6, 7, and 8 ((a)-(d), respectively). Each color corresponds to a basin of
attraction of a root in the basin. The dots represent the roots of 𝑓𝑛 and the two black curves in each
image are the curves shown in Fig. 3 in the grey regions. [2]

7 Symmetry Effects

In this section we briefly previewwork in progress on the potential effects of symme-
try on the behavior of the Laguerre iteration (2) with a = deg 𝑓 = 𝑛. The polynomials
𝑓𝑛 studied in the previous section have roots distributed uniformly and symmetri-
cally on the unit circle. In Figs. 7 and 8 we show the roots’ basins of attraction for
the polynomials 𝑞1 (𝑧) = (𝑧5 − 1) (𝑧5 − 32) and 𝑞2 (𝑧) = (𝑧5 − 1) (𝑧5 + 32). These
polynomials have their roots symmetrically distributed along the circles of radii 1
and 2, with 𝑞1 having the real roots 1 and 2 and 𝑞2 having the real roots 1 and −2.
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Fig. 5 Several consecutive zooms into two parts of the boundary of the union of the basins of
attractions to the roots of 𝑓𝑛 (𝑧) = 𝑧𝑛 − 1 for 𝑛 = 128. [2]
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(a) (b)

Fig. 6 Computed basins of attraction for 𝑓7 (𝑧) = 𝑧7 − 1 using the general formulation of the
method (2): (a) the equivalent of Fig. 4(c); (b) zoom into the center part of (a). [2]

Theoretical considerations and the numerical results show that the Laguerre iteration
has similar dynamics as for the case with 𝑓𝑛 (𝑧) = 𝑧𝑛 − 1 in the previous section: in
both cases the union of the basins of attraction to the roots is a subset of an annulus
centered at the origin and {0,∞} is an attracting two-cycle.

(a) (b)

Fig. 7 The roots’ basin of attraction for 𝑞1 (𝑧) = (𝑧5 − 1) (𝑧5 − 32): (a) the whole basin; (b) zoom
into the center region.

These observations then motivate the question of how symmetry of the poly-
nomials might be affecting the performance of the Laguerre iteration. A first ex-
ploration of this question concerns the idea of perturbing one of the roots of
𝑓𝑛 to break the symmetry of the roots. To this end, consider the polynomial
𝑝𝑟 (𝑧) = (𝑧 − 𝑟) (𝑧4 + 𝑧3 + 𝑧2 + 𝑧 + 1) in which 𝑟 is viewed as a perturbation of
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(a) (b)

Fig. 8 The roots’ basin of attraction for 𝑞2 (𝑧) = (𝑧5 − 1) (𝑧5 + 32): (a) the whole basin; (b) zoom
into the center region.

the real root 𝑧∗ = 1 of 𝑓5 (𝑧) = 𝑧5 − 1. In Figs. 9 and 10 we present the results of
small perturbations with 𝑟 ∈ R and the consequent changes in the roots’ basins of
attraction. Note how small perturbations result in significant changes in the basins.
In Fig. 9 we show the original basin with 𝑟 = 1 and two small perturbations: one
with 𝑟 = 1.00060 and one with 𝑟 = 1.00064. Notice how sensitive the results are
to these two perturbations. In the middle image the union of the basins of attraction
has slowly grown and slightly changed its shape. When changing 𝑟 from 1.00060 to
1.00064, there is a sudden change and as far as we could computationally check, the
basins visibly cover the complex plane.

(a) (b) (c)

Fig. 9 Basins of attraction to the roots of 𝑝𝑟 : (a) 𝑟 = 1, (b) 𝑟 = 1.00060, (c) 𝑟 = 1.00064.

In Fig. 10 we show the effects of changing 𝑟 to the values 0.99850 in (a), 0.99825
in (b), and 0.99822 in (c). A similar situation occurs here: first the union of the basins
starts growing in a slow, controlled way, but the small change in 𝑟 from 0.99825
to 0.99822 results in a sudden change again extending to much of the rest of the
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complex plane. Decreasing 𝑟 further (not shown here) appears to extend the union
of the basins of attraction to all but a possibly measure-zero subset of C.

(a) (b) (c)

Fig. 10 Basins of attraction to the roots of 𝑝𝑟 : (a) 𝑟 = 0.99850, (b) 𝑟 = 0.99825, (c) 𝑟 = 0.99822.

We also note that if 𝑟 ≠ 1, then there is no longer the two-cycle {0,∞}. Instead,
new attracting cycles of even-length orbits seem to appear and the white regions
in Figs. 9 and 10 correspond to the points in C converging to these cycles. The
various bifurcations appearing in this problem are currently under investigation by
the authors.

8 Conclusions

In practical problems there is often enough a priori knowledge of the desired roots
of the equation to ensure that convergence of the iterations is not a problem. When
a priori knowledge is poor, it is advisable to use a method that converges indepen-
dently of the starting values, but perhaps slowly, and then switch to a more rapidly
converging method.
In this work we reviewed some properties of the Laguerre iteration function (2)

focusing mostly on the case with a = deg 𝑓 = 𝑛, where 𝑓 is the polynomial whose
roots are sought. We conclude that the iteration produces excellent results when ap-
plied to polynomials of degrees 2 and 3 as shown in Section 5 where the polynomials
𝑝𝑐 (𝑧) = 𝑧2 − 𝑐 and 𝑝_ (𝑧) = 𝑧3 + (_ − 1)𝑧 − _ are studied.
From studying the very special case of the 𝑛th roots of unity we can conclude

that there are polynomials for which convergence to the roots, at least when exact
arithmetic is used, will not take place due to the existence of attracting cycles.
This is the case for the polynomials 𝑓𝑛 (𝑧) = 𝑧𝑛 − 1 with 𝑛 ≥ 5 for which {0,∞}
is an attracting two-cycle, and many other polynomials with similar behavior, not
discussed here, exist. For 𝑓𝑛 with 𝑛 = 4 the method converges globally except when
starting from 𝑧 = 0, but for 𝑛 ≥ 5 the measure of the union of the roots’ basins
of attraction tends to 0 as 𝑛 → ∞. However, this behavior may not be observed
when floating-point arithmetic is used and even for 𝑛 ≥ 5 the method may converge
globally as shown in Section 6. Additionally, when the symmetry of the roots of
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unity is slightly perturbed, convergence again seems to take place from much or all
of the complex plane as shown in Section 7. The perturbations discussed here lead
to the appearance of new attracting cycles and eventual bifurcations that appear to
result in near-global convergence to the roots.
Unlike with rational iteration maps, under Laguerre’s iteration the boundaries of

the individual roots’ basins of attraction do not correspond to the Julia sets of the
polynomials. Instead, many of the boundaries shared by the basins are points from
which convergence to one of the roots occurs and the boundary appears naturally
due to the algorithmic choice the iteration presents when both choices of the square
root in (2) result in denominators with the same modulus. As shown in Section 6,
the Julia sets are only the fractal boundaries of the flower-like regions presented in
Figs. 4–10, i.e., the unions of the roots’ basins of attraction.
We conclude that even though for many polynomials of practical interest La-

guerre’s iteration has excellent results, there are some polynomials for which it may
not. However, there are still many gaps in our understanding of the dynamics of the
method and there is possibly a lot of potential that can still be unlocked.
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